
UNIVERSIDAD DE CHILE
FACULTAD DE CIENCIAS FÍSICAS Y MATEMÁTICAS
DEPARTAMENTO DE CIENCIAS DE LA COMPUTACIÓN

RIVERTEXT: A FRAMEWORK FOR TRAINING AND EVALUATING
INCREMENTAL WORD EMBEDDINGS FROM TEXT DATA STREAMS

TESIS PARA OPTAR AL GRADO DE
MAGÍSTER EN CIENCIAS, MENCIÓN COMPUTACIÓN

MEMORIA PARA OPTAR AL TÍTULO DE
INGENIERO CIVIL EN COMPUTACIÓN

GABRIEL EMERSON ITURRA BOCAZ

PROFESOR GUÍA:
FELIPE BRAVO MÁRQUEZ

MIEMBROS DE LA COMISIÓN:
ANDRÉS ABELIUK KIMELMAN

CLAUDIO GUTIÉRREZ GALLARDO
ELIANA SCHEIHING GARCÍA

Este trabajo ha sido parcialmente financiado por ANID FONDECYT grant 1200290,
National Center for Artificial Intelligence CENIA FB210017 y ANID-Millennium Science

Initiative Program - Code ICN17 002.

SANTIAGO DE CHILE
2023

RiverText: Un marco para entrenar y evaluar Vectores

de Palabras Incrementales a partir de flujos infinitos de

Datos de Texto

Los Word embeddings se han convertido en herramientas indispensables en varios procesos
de lenguaje natural y tareas de recuperación de información, incluyendo clasificación de
documentos, ranking y respuestas a preguntas. Sin embargo, los modelos de embeddings
de palabras tradicionales tienen una limitación importante en su naturaleza estática, lo que
dificulta su capacidad para adaptarse a los patrones de lenguaje en constante evolución que
surgen en fuentes como las redes sociales y la web (por ejemplo, nuevos hashtags o nombres de
marca). Para abordar este desaf́ıo, se han introducido algoritmos de embedding de palabras
incrementales, que permiten la actualización dinámica de las representaciones de palabras en
respuesta a nuevos patrones de lenguaje y flujos de datos continuos.

Esta tesis presenta RiverText, un framework para la entrenamiento y evaluación de word
embeddings incrementales a partir de flujos de datos de texto. Nuestra herramienta propor-
ciona un recurso valioso para la comunidad de procesamiento de lenguaje natural que trabaja
con word embeddings en escenarios de streaming, como el análisis de redes sociales. La bib-
lioteca implementa varias técnicas de word embeddings incrementales, incluyendo Skip-gram,
Continuous Bag of Words y Word Context Matrix. Además, utiliza PyTorch como backend
para la formación de redes neuronales, lo que permite una formación eficiente y flexible.

También hemos implementado un módulo que adapta tareas de evaluación de word embed-
dings estáticos intŕınsecos, como la similitud y la categorización de palabras, a un entorno de
streaming. Finalmente, comparamos el rendimiento de nuestro marco de trabajo utilizando
diferentes configuraciones de hiperparámetros y discutimos los resultados.

Nuestra biblioteca de código abierto está disponible en https://github.com/dccuchile/

rivertext. Incluye documentación detallada y ejemplos para ayudar a los usuarios a comen-
zar rápidamente y fácilmente con el marco de trabajo. Creemos que nuestro trabajo benefi-
ciará en gran medida a investigadores y profesionales del procesamiento de lenguaje natural,
especialmente a aquellos que trabajan con grandes volúmenes de datos de texto en streaming.

i

https://github.com/dccuchile/rivertext
https://github.com/dccuchile/rivertext

RiverText: A Framework for Training and Evaluating

Incremental Word Embeddings from Text Data Streams

Word embeddings have become indispensable tools in various natural language processing
and information retrieval tasks, including document classification, ranking, and question
answering. However, traditional word embedding models have a major limitation in their
static nature, which hinders their ability to adapt to the constantly evolving language patterns
that emerge in sources such as social media and the web (e.g., new hashtags or brand names).
To address this challenge, incremental word embedding algorithms have been introduced,
enabling dynamic updating of word representations in response to new language patterns
and continuous data streams.

This thesis presents RiverText, a comprehensive framework for training and evaluating
incremental word embeddings from text data streams. Our tool provides a valuable resource
for the natural language processing community that deals with word embeddings in streaming
scenarios, such as social media analysis. The library implements various incremental word
embedding techniques in a standardized framework, including Skip-gram, Continuous Bag of
Words, and Word Context Matrix. Additionally, it uses PyTorch as its backend for neural
network training, enabling efficient and flexible training.

We have also implemented a module that adapts intrinsic static word embedding eval-
uation tasks, such as word similarity and categorization, to a streaming setting. Finally,
we compare the performance of our framework using different hyperparameter settings and
discuss the results.

Our open-source library is available at https://github.com/dccuchile/rivertext. It
includes detailed documentation and examples to help users get started with the framework
quickly and easily. We believe that our framework will greatly benefit researchers and prac-
titioners in natural language processing, especially those working with large-scale streaming
text data.

ii

https://github.com/dccuchile/rivertext

Dedicado a mi familia y amigos, gracias por apoyarme en este viaje.
También a mi perro Rex, que en paz descanse.

iii

Agradecimientos

Al terminar este trabajo se cierra una etapa de casi 9 años en la Facultad de Ciencias y
Matemáticas de la Universidad de Chile. Un etapa donde viv́ı muchas experiencia que me
formaron y me ayudaron a llegar a este punto, de las que puedo destacar: haber pasado por
dos departamentos, investigar sobre diferentes tópicos, cursar grandes asignaturas con los
mejores profesores, haber formado parte de diferentes grupos estudiantiles, haber realizado
docencia en múltiples cursos como profesor auxiliar y por último pero los más importante,
haber conocido a una infinidad de personas valiosas.

Si bien la universidad es una parte importante en mi vida, no es la única, existe otro
grupo de personas a la que quiero dedicar este trabajo. Ya que gracias a su cariño y apoyo
incondicional nunca me habŕıa convertido en la persona que soy ahora.

En primer lugar, quiero expresar mi profunda gratitud a mi madre. Mamá, tu inque-
brantable confianza en mı́ ha sido mi motor durante esta traveśıa académica. No hay palabras
suficientes para agradecerte todo lo que has hecho por mı́. A mi padre, por tu sabiduŕıa y
constante orientación han sido invaluables en cada paso de mi educación. También quiero
agradecer a mi hermana, que a lo largo de los años, hemos compartido risas, llantos, desaf́ıos
y triunfos juntos, nuestro v́ınculo es irrompible y estoy agradecido por tenerte en mi vida.
Finalmente, a mi abuela Inés y a mis t́ıas, Maritza, Paola y Katherine, que siempre han
estado ahi para escucharme y darme palabras de aliento cuando los visitaba en Chillán.

A los amigos de la vida: Daniel Fica, Michael Jerez y Fernanda Rubio que siempre han
estado ah́ı para compartir los momentos alegŕıa y frustación durante este viaje, gracias por
los buenos memes y las juntas que nos han acompañado todo estos años.

A lo amigos de la unversidad, en especial a mi grupo mechón: Daniel Montaner, Yasser
Uarac y Bejamı́n Constant, gracias por por siempre estar presentes, por los buenos consejos,
las idas en bici al cerro, las juntas al cine y los carretes que hemos mantenido a pesar del
paso de tiempo. A la gente que conoćı en Industrias, en especial a Franco Miranda, gracias
por los buenos memes, las idas al cine y las cervezas que hemos compartido estos años. Por
último, pero no menos importante, a mis amigos del DCC, Pablo Pizarro, Pablo Badilla,
Ignacio Meza y Alonso Utreras, gracias por los buenos consejos y su amistad, sin ellos nunca
habŕıa terminado esta tesis.

También a todas las personas que de una u otra forma me acompañaron en este viaje
y olvidé mencionar. Me es imposible a agregarlos a todos, pero gracias por los paseos,
las cervezas, los consejos y conversaciones que hayamos compartido por la vida o en la

iv

universidad. Quiero que sepan que su compañ́ıa me hizo muy feliz y sin ella probablemente
nunca habŕıa logrado terminar este proceso.

Llegando al plano académico, quiero agraceder a las personas del grupo de investigación
ReLeLa y al departemento de Ciencias de la Computación, del cual formo parte, su formación
me ha servido para darme cuenta que la investigación y la docencia son lo mı́o, y espero que
en el futuro pueda seguir expandiendo y desarrollando las áreas que he aprendido.

Quiero agredecer directamente, a mi profesor gúıa y también quien ha sido mi mentor
durante estos años, el profesor Felipe Bravo Márquez. Gracias por haber créıdo en mı́ sin
conocerme al confiarme un tema de investigación poco explorado en la universidad. Además,
su supervisión y buenos consejos han sido fundamentales en mi crecimiento como investigador,
sin ellos nunca me hubiera atrevido a enviar mi trabajo a una conferencia internacional, a la
cual este trabajo fue aceptado.

También me gustaŕıa mencionar al profesor Claudio Gutiérrez, gracias por nuestros de-
bates poĺıticos y los consejos sobre como perseguir una carrera en la academı́a.

Para finalizar, agradezco el financiamiento del proyecto FONDECYT 11200290 titulado
“Tracking Social Public Opinion: A Stream-Mining Based Approach”, al National Center for
Artificial Intelligence CENIA FB210017 y al ANID-Millennium Science Initiative Program -
Code ICN17 002 que hicieron este trabajo posible.

v

Table of Content

1 Introduction 1

1.1 Problem Statement . 2

1.2 Research Hypothesis . 3

1.3 Objectives . 3

1.3.1 General Objectives . 3

1.3.2 Specific Objectives . 4

1.4 Methodology . 4

1.5 Research Outcome . 5

1.6 Outline . 5

2 Background and Related Work 7

2.1 Scientific Disciplines . 7

2.1.1 Artificial Intelligence . 7

2.1.2 Machine Learning . 8

2.1.3 Deep Learning and Feedfoward Neural Network 9

2.1.4 Natural Language Processing . 10

2.1.5 Incremental and Streaming Learning 12

2.1.6 Instance and Batch Incremental Learning 13

2.2 Word Representation . 14

2.2.1 One Hot Representation . 14

2.2.2 Distributional Hypothesis and Distributional Representations 15

vi

2.2.3 Word Context Matrices . 15

2.2.4 Distributed Representation or Word Embeddings 20

2.2.5 Other methods . 26

2.3 Intrinsic NLP Tasks . 27

2.4 Streaming in Word Embedding models . 28

2.5 Related Work . 29

2.5.1 Incremental Word Embedding Models 29

2.5.2 Stream Machine Learning Libraries 30

2.5.3 Intrinsic Evaluation . 31

3 RiverText Foundations 32

3.1 Misra Greis Algorithm . 33

3.2 Incremental Learning Approaches . 34

3.3 Periodic Evaluation . 35

3.4 Implemented Methods . 37

3.4.1 Incremental Word Context Matrix . 37

3.4.2 Incremental Word2Vec . 38

4 Experiments and Results 41

4.1 Data . 41

4.2 Experimental setup . 41

4.2.1 Hyperparameter settings . 42

4.2.2 Results and discussion . 43

5 RiverText Library 49

5.1 Motivation . 50

5.2 Components . 50

5.2.1 Word Embedding Model . 50

5.2.2 Periodic Evaluation . 58

vii

5.2.3 Utils . 58

5.2.4 Training Process . 60

6 Conclusion and Future Work 64

6.1 Conclusion . 64

6.2 Future Work . 65

Bibliography 72

Annexes 73

Annex A Experiment Results by Task and Model 73

Annex B Time serie plots 82

viii

List of Tables

2.1 Example of a word-context matrix . 16

4.1 Hyperparameter configuration for the ISG and ICBOW models. 43

4.2 Hyperparameter configuration for IWCM model. 44

4.3 The table shows the results of the periodic evaluation of the ICBOW model
and the MEN dataset for the similarity task, measured with Spearman’s cor-
relation. Although the full table is too large for this paper, it can be accessed
on the documentation page. The bold remark represents the best result on
average. 45

4.4 The Overall Ranking of the benchmark results are based on the average of
the Periodic Evaluation applied across the text stream. The result tasks are
calculated by finding the mean of the evaluation, and the overall mean is
determined by taking the average of these result tasks. This overall mean
then determines the position in the ranking. 46

A.1 The table shows the results of the periodic evaluation of the ICBOW model
and the Mturk dataset for the similarity task, measured with Spearman’s
correlation. Although the full table is too large for this paper, it can be
accessed on the documentation page at https://dccuchile.github.io/rivertext/.
The bold remark represents the best result on average. 74

A.2 The table shows the results of the periodic evaluation of the ICBOW model
and the AP dataset for the categorization task, measured with purity cluster-
ing. Although the full table is too large for this paper, it can be accessed on
the documentation page at https://dccuchile.github.io/rivertext/. The bold
remark represents the best result on average. 75

A.3 The table shows the results of the periodic evaluation of the ISG model and
the MEN dataset for the similarity task, measured with Spearman’s correla-
tion. Although the full table is too large for this paper, it can be accessed on
the documentation page at https://dccuchile.github.io/rivertext/. The bold
remark represents the best result on average 76

ix

A.4 The table shows the results of the periodic evaluation of the ISG model and
the Mturk dataset for the similarity task, measured with Spearman’s correla-
tion. Although the full table is too large for this paper, it can be accessed on
the documentation page at https://dccuchile.github.io/rivertext/. The bold
remark represents the best result on average. 77

A.5 The table shows the results of the periodic evaluation of the ISG model and
the AP dataset for the categorization task, measured with purity clustering.
Although the full table is too large for this paper, it can be accessed on the doc-
umentation page at https://dccuchile.github.io/rivertext/. The bold remark
represents the best result on average. 78

A.6 The table shows the results of the periodic evaluation of the IWCM model and
the MEN dataset for the similarity task, measured with Spearman’s correla-
tion. Although the full table is too large for this paper, it can be accessed on
the documentation page at https://dccuchile.github.io/rivertext/.. The bold
remark represents the best result on average. 79

A.7 The table shows the results of the periodic evaluation of the IWCM model
and the Mturk dataset for the similarity task, measured with Spearman’s
correlation. Although the full table is too large for this paper, it can be
accessed on the documentation page at https://dccuchile.github.io/rivertext/.
The bold remark represents the best result on average. 80

A.8 The table shows the results of the periodic evaluation of the IWCM model
and the AP dataset for the categorization task, measured with purity cluster-
ing. Although the full table is too large for this paper, it can be accessed on
the documentation page at https://dccuchile.github.io/rivertext/. The bold
remark represents the best result on average. 81

x

List of Figures

2.1 Here is a diagram illustrating the relationship between Artificial Intelligence,
Machine Learning, Computer Vision, Natural Language Processing (NLP),
and Streaming Learning. 8

2.2 Diagram of basic Machine Learning Pipeline. 8

2.3 Diagram of a Multilayer Perceptron Network. 10

2.4 Streaming Learning Pipeline. 12

2.5 Diagram of Skip-Gram model. 22

2.6 Diagram of CBOW model. 25

4.1 Best setting models for MEN, Mturk, and AP datasets. The period p was set
as 3,200,000 instances, which means the evaluator of the period evaluation was
applied every 3,200,000 training instances. 47

5.1 The class diagram for IWVBase, representing a base incremental WE algorithm,
should include the attributes and methods specific to this class. As IWVBase

extends the Transformer and VectorizeMixin classes, it can inherit their
respective methods for processing textual data streams and for applying the
incremental learning paradigm. 52

5.2 Attributes and methods for the IWordContextMatrix class that represents the
IWCM method. 53

5.3 Attributes and methods for the IWord2Vec class that represents the ISG and
ICBOW methods. 55

xi

5.4 The iword2vec utils module includes three crucial classes for its functional-
ity, which are visualized in three separate diagrams. The first diagram displays
the UnigramTable class, which creates and maintains a table of unigram fre-
quencies used in the ISG and ICBOW models. Its primary methods include
generating a table, sampling words from the table, and updating it after a
new word is processed. The second diagram shows the Preprocessor class,
responsible for converting the input stream of text into a neural network rep-
resentation. It uses techniques such as subsampling and negative sampling to
prepare the input for the neural network. Finally, the third diagram depicts
the PyTorch implementation for the neural network backend, which includes
input and output embedding layers and hidden layers that perform the neural
network computations. The diagrams visually represent the classes and their
interactions within the iword2vec utils module. 57

5.5 Diagram of class that shows the attributes and methods for the PeriodicEvaluation
class that represent the Periodic Evaluation. 58

5.6 The utils package contains two important classes: TweetStream and Vocab.
The TweetStream class is responsible for loading and iterating through files
that may not be stored on disk, providing a convenient interface for processing
large volumes of text data stored in memory or streamed from an external
source. The Vocab class stores the words associated with the vocabulary for
the incremental word embedding methods. 60

5.7 Training scheme for the IWCM model. 61

5.8 Training scheme for the incremental Word2Vec models. 61

5.9 Workflow scheme for running the Periodic Evaluation using an incremental
WE model. 63

B.1 In this experiment, we evaluated the performance of three incremental word
embedding models, IWCM, ISG, and ICBOW, using the Periodic Evalua-
tion technique for the similarity and categorization task using the hyper-
parameter settings of emb size = 100, window size = 1, ns samples = 1,
and context size = 500 across the training phase. The period p was set as
3,200,000 instances, which means the evaluator of the period evaluation was
applied every 3,200,000 training instances. 83

B.2 In this experiment, we evaluated the performance of three incremental word
embedding models, IWCM, ISG, and ICBOW, using the Periodic Evaluation
technique for the similarity and categorization task using the hyperparameter
settings of embsize = 100, windowsize = 1, nssamples = 8, and contextsize =
750across the training phase. The period p was set as 3,200,000 instances,
which means the evaluator of the period evaluation was applied every 3,200,000
training instances. 84

xii

B.3 In this experiment, we evaluated the performance of three incremental word
embedding models, IWCM, ISG, and ICBOW, using the Periodic Evalua-
tion technique for the similarity and categorization task using the hyper-
parameter settings of embsize = 100, windowsize = 1, nssamples = 10,
and contextsize = 1000 across the training phase. The period p was set as
3,200,000 instances, which means the evaluator of the period evaluation was
applied every 3,200,000 training instances. 85

B.4 In this experiment, we evaluated the performance of three incremental word
embedding models, IWCM, ISG, and ICBOW, using the Periodic Evalua-
tion technique for the similarity and categorization task using the hyper-
parameter settings of emb size = 100, window size = 2, ns samples = 6,
and context size = 500 across the training phase. The period p was set as
3,200,000 instances, which means the evaluator of the period evaluation was
applied every 3,200,000 training instances. 86

B.5 In this experiment, we evaluated the performance of three incremental word
embedding models, IWCM, ISG, and ICBOW, using the Periodic Evalua-
tion technique for the similarity and categorization task using the hyper-
parameter settings of emb size = 100, window size = 2, ns samples = 8,
and context size = 750 across the training phase. The period p was set as
3,200,000 instances, which means the evaluator of the period evaluation was
applied every 3,200,000 training instances. 87

B.6 In this experiment, we evaluated the performance of three incremental word
embedding models, IWCM, ISG, and ICBOW, using the Periodic Evalua-
tion technique for the similarity and categorization task using the hyperpa-
rameter settings of emb size = 100, window size = 2, ns samples = 10,
and context size = 1000 across the training phase. The period p was set as
3,200,000 instances, which means the evaluator of the period evaluation was
applied every 3,200,000 training instances. 88

B.7 In this experiment, we evaluated the performance of three incremental word
embedding models, IWCM, ISG, and ICBOW, using the Periodic Evalua-
tion technique for the similarity and categorization task using the hyper-
parameter settings of emb size = 100, window size = 3, ns samples = 6,
and context size = 500 across the training phase. The period p was set as
3,200,000 instances, which means the evaluator of the period evaluation was
applied every 3,200,000 training instances. 89

B.8 In this experiment, we evaluated the performance of three incremental word
embedding models, IWCM, ISG, and ICBOW, using the Periodic Evalua-
tion technique for the similarity and categorization task using the hyper-
parameter settings of emb size = 100, window size = 3, ns samples = 8,
and context size = 750 across the training phase. The period p was set as
3,200,000 instances, which means the evaluator of the period evaluation was
applied every 3,200,000 training instances. 90

xiii

B.9 In this experiment, we evaluated the performance of three incremental word
embedding models, IWCM, ISG, and ICBOW, using the Periodic Evalua-
tion technique for the similarity and categorization task using the hyperpa-
rameter settings of emb size = 100, window size = 3, ns samples = 10,
and context size = 1000 across the training phase. The period p was set as
3,200,000 instances, which means the evaluator of the period evaluation was
applied every 3,200,000 training instances. 91

B.10 In this experiment, we evaluated the performance of three incremental word
embedding models, IWCM, ISG, and ICBOW, using the Periodic Evalua-
tion technique for the similarity and categorization task using the hyper-
parameter settings of emb size = 200, window size = 1, ns samples = 6,
and context size = 500 across the training phase. The period p was set as
3,200,000 instances, which means the evaluator of the period evaluation was
applied every 3,200,000 training instances. 92

B.11 In this experiment, we evaluated the performance of three incremental word
embedding models, IWCM, ISG, and ICBOW, using the Periodic Evalua-
tion technique for the similarity and categorization task using the hyper-
parameter settings of emb size = 200, window size = 1, ns samples = 8,
and context size = 750 across the training phase. The period p was set as
3,200,000 instances, which means the evaluator of the period evaluation was
applied every 3,200,000 training instances. 93

B.12 In this experiment, we evaluated the performance of three incremental word
embedding models, IWCM, ISG, and ICBOW, using the Periodic Evalua-
tion technique for the similarity and categorization task using the hyperpa-
rameter settings of emb size = 200, window size = 1, ns samples = 10,
and context size = 1000 across the training phase. The period p was set as
3,200,000 instances, which means the evaluator of the period evaluation was
applied every 3,200,000 training instances. 94

B.13 In this experiment, we evaluated the performance of three incremental word
embedding models, IWCM, ISG, and ICBOW, using the Periodic Evalua-
tion technique for the similarity and categorization task using the hyper-
parameter settings of emb size = 200, window size = 2, ns samples = 6,
and context size = 500 across the training phase. The period p was set as
3,200,000 instances, which means the evaluator of the period evaluation was
applied every 3,200,000 training instances. 95

B.14 In this experiment, we evaluated the performance of three incremental word
embedding models, IWCM, ISG, and ICBOW, using the Periodic Evalua-
tion technique for the similarity and categorization task using the hyper-
parameter settings of emb size = 200, window size = 2, ns samples = 8,
and context size = 750 across the training phase. The period p was set as
3,200,000 instances, which means the evaluator of the period evaluation was
applied every 3,200,000 training instances. 96

xiv

B.15 In this experiment, we evaluated the performance of three incremental word
embedding models, IWCM, ISG, and ICBOW, using the Periodic Evalua-
tion technique for the similarity and categorization task using the hyperpa-
rameter settings of emb size = 200, window size = 2, ns samples = 10,
and context size = 1000 across the training phase. The period p was set as
3,200,000 instances, which means the evaluator of the period evaluation was
applied every 3,200,000 training instances. 97

B.16 In this experiment, we evaluated the performance of three incremental word
embedding models, IWCM, ISG, and ICBOW, using the Periodic Evalua-
tion technique for the similarity and categorization task using the hyper-
parameter settings of emb size = 200, window size = 3, ns samples = 6,
and context size = 500 across the training phase. The period p was set as
3,200,000 instances, which means the evaluator of the period evaluation was
applied every 3,200,000 training instances. 98

B.17 In this experiment, we evaluated the performance of three incremental word
embedding models, IWCM, ISG, and ICBOW, using the Periodic Evalua-
tion technique for the similarity and categorization task using the hyper-
parameter settings of emb size = 200, window size = 3, ns samples = 8,
and context size = 750 across the training phase. The period p was set as
3,200,000 instances, which means the evaluator of the period evaluation was
applied every 3,200,000 training instances. 99

B.18 In this experiment, we evaluated the performance of three incremental word
embedding models, IWCM, ISG, and ICBOW, using the Periodic Evalua-
tion technique for the similarity and categorization task using the hyperpa-
rameter settings of emb size = 200, window size = 3, ns samples = 10,
and context size = 1000across the training phase. The period p was set as
3,200,000 instances, which means the evaluator of the period evaluation was
applied every 3,200,000 training instances. 100

B.19 In this experiment, we evaluated the performance of three incremental word
embedding models, IWCM, ISG, and ICBOW, using the Periodic Evalua-
tion technique for the similarity and categorization task using the hyper-
parameter settings of emb size = 300, window size = 1, ns samples = 6,
and context size = 500 across the training phase. The period p was set as
3,200,000 instances, which means the evaluator of the period evaluation was
applied every 3,200,000 training instances. 101

B.20 In this experiment, we evaluated the performance of three incremental word
embedding models, IWCM, ISG, and ICBOW, using the Periodic Evalua-
tion technique for the similarity and categorization task using the hyper-
parameter settings of emb size = 300, window size = 1, ns samples = 8,
and context size = 750 across the training phase. The period p was set as
3,200,000 instances, which means the evaluator of the period evaluation was
applied every 3,200,000 training instances. 102

xv

B.21 In this experiment, we evaluated the performance of three incremental word
embedding models, IWCM, ISG, and ICBOW, using the Periodic Evalua-
tion technique for the similarity and categorization task using the hyperpa-
rameter settings of emb size = 300, window size = 1, ns samples = 10,
and context size = 1000 across the training phase. The period p was set as
3,200,000 instances, which means the evaluator of the period evaluation was
applied every 3,200,000 training instances. 103

B.22 In this experiment, we evaluated the performance of three incremental word
embedding models, IWCM, ISG, and ICBOW, using the Periodic Evalua-
tion technique for the similarity and categorization task using the hyper-
parameter settings of emb size = 300, window size = 2, ns samples = 6,
and context size = 500 across the training phase. The period p was set as
3,200,000 instances, which means the evaluator of the period evaluation was
applied every 3,200,000 training instances. 104

B.23 In this experiment, we evaluated the performance of three incremental word
embedding models, IWCM, ISG, and ICBOW, using the Periodic Evalua-
tion technique for the similarity and categorization task using the hyper-
parameter settings of emb size = 300, window size = 2, ns samples = 8,
and context size = 750 across the training phase. The period p was set as
3,200,000 instances, which means the evaluator of the period evaluation was
applied every 3,200,000 training instances. 105

B.24 In this experiment, we evaluated the performance of three incremental word
embedding models, IWCM, ISG, and ICBOW, using the Periodic Evalua-
tion technique for the similarity and categorization task using the hyperpa-
rameter settings of emb size = 300, window size = 2, ns samples = 10,
and context size = 1000 across the training phase. The period p was set as
3,200,000 instances, which means the evaluator of the period evaluation was
applied every 3,200,000 training instances. 106

B.25 In this experiment, we evaluated the performance of three incremental word
embedding models, IWCM, ISG, and ICBOW, using the Periodic Evalua-
tion technique for the similarity and categorization task using the hyper-
parameter settings of emb size = 300, window size = 3, ns samples = 6,
and context size = 500 across the training phase. The period p was set as
3,200,000 instances, which means the evaluator of the period evaluation was
applied every 3,200,000 training instances. 107

B.26 In this experiment, we evaluated the performance of three incremental word
embedding models, IWCM, ISG, and ICBOW, using the Periodic Evalua-
tion technique for the similarity and categorization task using the hyper-
parameter settings of emb size = 300, window size = 3, ns samples = 8,
and context size = 750 across the training phase. The period p was set as
3,200,000 instances, which means the evaluator of the period evaluation was
applied every 3,200,000 training instances. 108

xvi

B.27 In this experiment, we evaluated the performance of three incremental word
embedding models, IWCM, ISG, and ICBOW, using the Periodic Evalua-
tion technique for the similarity and categorization task using the hyperpa-
rameter settings of emb size = 300, window size = 3, ns samples = 10,
and context size = 1000 across the training phase.The period p was set as
3,200,000 instances, which means the evaluator of the period evaluation was
applied every 3,200,000 training instances. 109

xvii

Chapter 1

Introduction

Human language, as an infinite source of information, has undergone numerous transforma-
tions throughout history. Moreover, with the advent of social media, the rate of change and
evolution has accelerated significantly [23], making it increasingly challenging to process and
comprehend all available data. Natural Language Processing [25] is a discipline that aims
to provide strategies and algorithms for understanding and to process human language from
various perspectives, including text analysis, speech recognition, language translation, and
sentiment analysis, among other applications. Thus, NLP plays a crucial role in making sense
of the vast information generated in today’s digital age.

A significant challenge in the field of NLP is the representation of text in mathematical
objects that are computationally tractable. Various approaches have been proposed to ad-
dress this issue. However, the most prevalent method is the utilization of representations
based on the distributional hypothesis [41]. The distributional hypothesis posits that words
that appear in similar contexts tend to have similar meanings. This suggests that the mean-
ing of words can be inferred through their contexts or, more specifically, through the words
that co-occur with them.

Word Embedding (WE) [6], a representation of the distributional hypothesis, has become
a fundamental component of NLP due to its exceptional ability to capture syntactic and
semantic language relations in a vector space. These models are generally classified into
two primary approaches: count-based approaches [91], also known as distributional models,
and word embedding or distributed models [63]. The former approach constructs a context
word matrix that counts the number of co-occurrences, while the latter relies on complex
neural network structures. Subsequent research has established the equivalence of these ap-
proaches [55], demonstrating that both methods effectively capture the underlying linguistic
regularities in text data.

However, the static nature of standard WE algorithms prevents them from incorporating
new words, such as hashtags or new brand names, and adapting to semantic changes in
existing words. For example, when unexpected events associated with an entity suddenly
occur (e.g., a scandal related to a public figure or a company may change its perceived
sentiment). Another scenario is when a given word acquires a new meaning in a particular
event; for example, the word “ukrop” changed from “dill” to “Ukrainian patriot” during the

1

Russian-Ukrainian crisis [89]. To incorporate these changes into traditional WE, they must
be retrained or aligned with new models to incorporate knowledge from new text sources,
which is computationally inefficient.

The research community has proposed several methods for incremental learning in WE
to address the drawbacks in traditional approaches. However, these methods, such as the
incremental word context matrix (IWCM) [20], incremental skip-gram negative sampling
(ISG) [46, 61], and incremental hierarchical softmax [76], lack a unified and transparent
setup for comparison, hindering the examination and understanding of their quality and
performance. This lack of information is crucial for deploying these algorithms in real-world
NLP and applications.

In this thesis, we integrate these attempts into a new Python library called RiverText.
This resource aims to unify and standardize the aforementioned methods into an easy-to-use
toolkit. RiverText extends the interfaces provided by River [67], a machine-learning library
for data streams, by enabling continuous learning of word embeddings from text streams,
either from one instance at a time or from a mini-batch of [81] examples. In addition, it uses
PyTorch [72] as its backend for implementing neural networks.

RiverText (as well as River) is based on the stream machine learning paradigm [31, 81, 2],
which posits the following requirements for a learning algorithm [3, 69, 17]:

1. be able to process one instance (or mini-batch) at a time and inspect it (at most) once;

2. be able to process data with limited resources (time and memory);

3. be able to generate a prediction or transformation at any time;

4. is able to adapt to temporal changes.

In RiverText, we developed a standardized procedure to evaluate incremental WE meth-
ods to track the quality of embeddings throughout the stream. Our procedure performs a
periodic evaluation (e.g., after processing a certain number of text instances) of existing in-
trinsic WE evaluation tasks for word similarity and categorization. In addition, we perform a
comprehensive evaluation of three incremental WE methods: IWCM, ISG, and incremental
continuous bag-of-words (ICBOW).

The next sections detail the selected models’ technical problems and standardization
challenges.

1.1 Problem Statement

In recent years, the development of incremental techniques for generating word embeddings
[20, 46, 61, 76, 75] has garnered significant attention from researchers. These techniques are
specifically designed for processing streaming text data, characterized by theoretically infinite
text sequences [3]. Furthermore, unlike conventional batch learning approaches [102], incre-
mental techniques [31] enable the creation of word embeddings, making them advantageous
for real-time analysis.

2

Despite significant progress in incremental word embeddings, the standardization of datasets
and implementation procedures remains challenging due to their continuous learning paradigm.
Furthermore, conventional evaluation criteria are not suitable for streaming scenarios, em-
phasizing the need for transparent evaluation criteria and benchmarking for incremental
representation techniques. Finally, the lack of user-friendly interfaces is another obstacle
that needs to be overcome for researchers and industry practitioners to effectively utilize
these techniques.

Given the increasing prevalence of streaming environments [69, 96], such as social media,
the demand for efficient and accurate incremental word embedding models [20, 46, 61, 76, 75]
and accessible frameworks for their application is growing. However, applying incremental
word embedding techniques to stream text data requires addressing several challenges. En-
suring the privacy and security of real-time data streams [101], adapting to multilingual or
code-mixed data streams [99], addressing the phenomenon of concept drift [95], and dealing
with noisy or unstructured data streams are among the significant challenges that need to
be considered.

That said, whether a standard and comprehensive framework can be created that incor-
porates all the previously outlined challenges remains uncertain.

1.2 Research Hypothesis

The thesis posits that by harnessing the shared characteristics and features of Incremental
Word Embeddings, it is possible to establish a standardized framework that aligns with
the instance and incremental batch paradigm. Additionally, the study proposes expanding
the intrinsic evaluation process to accommodate the unique challenges streaming text data
presents during the training phase.

1.3 Objectives

1.3.1 General Objectives

This thesis aims to comprehensively analyze and compare different incremental word vector
methodologies utilized for streaming text data, particularly in social media, as identified in
the current state-of-the-art literature [20, 46, 61, 76, 75]. The ultimate goal is to consolidate
these techniques into a cohesive, user-friendly framework for researchers and practitioners.
Moreover, this study proposes a periodic evaluation scheme to assess the effectiveness and
robustness of the proposed framework for long-term deployment in real-world scenarios. By
doing so, this thesis aims to contribute to advancing incremental word vector methodologies
and their practical applications in various fields.

3

1.3.2 Specific Objectives

1. Propose and evaluate different incremental word embedding algorithms for training
text data in streaming scenarios, to improve the efficiency and effectiveness of these
models in handling large and dynamic text streams.

2. Design a unified framework that standardizes the proposed algorithms under an incre-
mental learning paradigm.

3. Propose an extension of the intrinsic evaluation task to evaluate the performance of the
incremental word embedding models in a streaming scenario, allowing for continuous
monitoring of the models over time.

4. Integrate the proposed unified framework of incremental word embedding techniques
and evaluation scheme into an open-source library to facilitate the reproducibility and
accessibility of the experiments conducted in this study.

5. Conduct a comprehensive comparative analysis of the performance of various incremen-
tal word embedding models using the extended intrinsic NLP tasks evaluation scheme
to assess the efficacy of the proposed algorithms under various streaming text data
scenarios.

1.4 Methodology

This section outlines the methodology employed to achieve the specific objectives of our
research. In summary, the study comprises the following steps:

1. Conducting a literature review of word embedding techniques under streaming ap-
proaches and incremental learning [20, 46, 61, 76, 75]. The selection of models will be
based on source code availability and the recency of publication [20, 46].

2. Performing a comprehensive literature review of evaluation methods for word embed-
dings, focusing on intrinsic NLP tasks such as similarities, analogies, and related metrics
[44, 33]. We will also investigate the software tools available for these tasks [86].

3. Reproducing the implementation of the existing models IWCM [20] and ISG [46] in
Python. This step aims to assess the performance of these models, understand their
key parameters, and analyze their outputs.

4. Familiarize ourselves with the core concepts of incremental learning, particular instance,
and incremental batch learning [81] to propose a common interface encompassing in-
cremental word embedding techniques under the streaming paradigm.

5. Designing an evaluation scheme that extends the traditional intrinsic NLP task for
static word embeddings, considering the specifics of streaming scenarios.

6. Develop a module incorporating the selected models and the new evaluation scheme
into a Python package.

4

7. Conducting a comprehensive study of the incremental word embedding techniques to
understand their strengths and weaknesses under streaming scenarios, using the evalu-
ation scheme developed in step 5.

Overall, this methodology seeks to provide a rigorous and comprehensive evaluation of
the performance of incremental word embedding techniques in streaming scenarios and to
develop a framework that facilitates their application and implementation.

1.5 Research Outcome

To showcase the effectiveness of our proposed framework, we sent a paper titled “RiverText:
A Python Library for Training and Evaluating Incremental Word Embeddings from Text
Data Streams” that was accepted by the committee at the 46th International ACM SIGIR
Conference on Research and Development in Information Retrieval (SIGIR 2023)1. Our
paper provides an in-depth analysis of the performance of our proposed framework and
highlights its key advantages over traditional WE models.

The RiverText framework is specifically designed for training and evaluating incremental
Word Embeddings from text data streams. It is a departure from traditional static WE
models, as it follows an incremental methodology that is more efficient, adaptable, and
capable of handling large datasets.

Our paper details the key features of the RiverText framework, including its ability to
process data with limited resources, generate predictions or transformations at any time, and
adapt to temporal changes. We also conducted a benchmark study to showcase the frame-
work’s effectiveness, and our results demonstrate that RiverText outperforms traditional WE
models in terms of accuracy and efficiency.

Furthermore, we have made the RiverText framework available for download from its
official website2. The framework is easy to use and has been designed with scalability in
mind, making it suitable for large-scale applications. We encourage other researchers to use
the framework and continue to build on our work.

We believe that the RiverText framework represents a significant advancement in natural
language processing. We look forward to seeing how other researchers will use and build on
our work to further push the boundaries of this exciting area of research.

1.6 Outline

The rest of the thesis is organized as follows:

1https://sigir.org/sigir2023/
2https://dccuchile.github.io/rivertext/

5

In Chapter 2, we comprehensively discuss the theoretical background and related work
that underlies our proposed methodology.

Chapter 3 presents the RiverText framework, which encompasses the models and evalu-
ation scheme we developed for our research. We detail the foundations of our methodology,
including its design principles, architecture, and model selection.

In Chapter 4, we discuss our experimental design and present the main results from our
benchmark of the RiverText models. We analyze the performance of our methodology across
a range of data sets and present insights gained from our experiments.

Chapter 5 delves into the implementation details of our framework and provides a com-
prehensive description of the code design. We discuss the libraries and tools we use and
provide guidelines for future developers who seek to utilize our approach.

Finally, in the concluding Chapter 6, we summarize our research findings and provide
insights into potential avenues for future work. We discuss the limitations of our approach,
suggest areas for improvement, and outline directions for future research.

6

Chapter 2

Background and Related Work

This chapter provides an overview of the scientific disciplines related to this work. We
then delve into the core concepts of word representation and streaming learning, central
to this thesis. Next, we further explore the challenges the streaming problem poses in the
context of the word representation algorithms. Finally, we review the related work on word
representation in the streaming setting.

2.1 Scientific Disciplines

2.1.1 Artificial Intelligence

Artificial Intelligence (AI) is a scientific field that seeks to develop intelligent machines capable
of simulating human-like behavior. AI technology is leveraged to construct sophisticated
systems capable of solving complex problems and making real-time decisions. To this end, AI
employs various techniques, including machine learning, deep learning, predictive analytics,
natural language processing, and image processing, to analyze datasets and identify patterns
and correlations.

To be considered artificially intelligent, a system must possess, at a minimum, the follow-
ing capabilities (as described in [50]):

• Knowledge representation: the ability to store and maintain knowledge.

• Automated reasoning: the capacity to reason based on stored knowledge.

• Machine learning: the capability to learn from its environment, primarily through data
analysis.

7

Figure 2.1: Here is a diagram illustrating the relationship between Artificial Intelligence,
Machine Learning, Computer Vision, Natural Language Processing (NLP), and Streaming
Learning.

2.1.2 Machine Learning

Machine learning [102] (ML) is a subfield of artificial intelligence that aims to develop algo-
rithms and models that enable computers to learn and improve from experience. Machine
learning algorithms use statistical techniques to automatically identify patterns and rela-
tionships in data without being explicitly programmed to do so. This allows machines to
make predictions or decisions based on the analyzed data. The field of machine learning has
rapidly evolved in recent years, driven by the availability of large amounts of data, powerful
computing resources, and innovative algorithm development.

Figure 2.2: Diagram of basic Machine Learning Pipeline.

Figure 2.2 depicts the standard machine learning pipeline comprising four primary phases.
The first phase is data processing, which performs all necessary transformations on raw data
to obtain a standardized output. The second phase is the training phase, where the model
is trained using input from the processed data to make predictions for a given task. The
evaluation phase then assesses the model’s effectiveness using quantitative methods. Finally,
once the model can provide accurate predictions for unseen data, it is deployed for use by
end-users.

The field of machine learning can be divided into several subdisciplines, including but not
limited to:

• Supervised learning [24] is one of the most common forms of machine learning. A
machine learning model is trained on labeled data in supervised learning, meaning
an expected output or label accompanies the input data. The model then uses this

8

labeled data to predict new, unseen data. Supervised learning can be used for tasks
such as image classification, speech recognition, and natural language processing. This
approach is especially useful when there is a clear relationship between the input and
output data and when the training data is well-structured.

• Unsupervised learning [11], on the other hand, involves training a model on unlabeled
data and is tasked with identifying patterns or relationships within the data. This is
often used when there is no clear relationship between the input and output data or
when the data is unstructured. Examples of unsupervised learning include clustering,
anomaly detection, and dimensionality reduction. Unsupervised learning is also used
for tasks such as recommendation systems, where the goal is to identify patterns in
user behavior.

• Reinforcement learning [97] is another type of machine learning that involves training
a model through trial and error to make decisions in an environment where the model
receives feedback through rewards or punishments. Reinforcement learning is often
used in robotics, gaming, and control systems. Reinforcement learning aims to find an
optimal policy or decision-making process that maximizes the reward signal. Reinforce-
ment learning is a complex machine learning area requiring sophisticated algorithms
and a deep understanding of the problem domain.

2.1.3 Deep Learning and Feedfoward Neural Network

Deep learning [53] is a subfield of machine learning that uses artificial neural networks to
model and solve complex problems. It is characterized by its ability to process and learn from
large volumes of data and automatically extract hierarchical features. Deep learning models
comprise multiple layers of interconnected nodes, also known as artificial neurons [52], that
perform mathematical operations on the input data to generate outputs.

A feedforward neural network [12], also known as a multilayer perceptron (MLP), is a type
of deep learning model that consists of multiple layers of neurons arranged in a feedforward
manner. The input layer receives the input data, which is then processed by the hidden layers,
and the output layer generates the final output. Each neuron in a feedforward network is
connected to all the neurons in the previous and subsequent layers but not to neurons in the
same layer.

The neurons in a feedforward network perform a weighted sum of their inputs and apply
an activation function [88] to the result to generate their output. The weights and biases
of the neurons are learned during training using optimization algorithms such as stochastic
gradient descent (SGD) [8]. The training goal is to find the weights and biases that minimize
a given cost or loss function [94], which measures the difference between the predicted and
actual output. Once the network is trained, it can be used to make predictions on new,
unseen data.

Formally, it can be defined as:

9

Figure 2.3: Diagram of a Multilayer Perceptron Network.

h⃗(0) = σ(W (0) · x⃗+ b⃗(0))

h⃗(i) = σ(W (i) · h⃗(I−1) + b⃗(i))

⃗̂y = softmax(σ(W (n) · h⃗(n) + b⃗(n)))

(2.1)

Where σ represents an activate function, commonly relu [85], or sigmoid [79].

2.1.4 Natural Language Processing

Natural Language Processing [60] (NLP) is an interdisciplinary field that combines computer
science, linguistics, and artificial intelligence to develop algorithms and models that enable
machines to understand, analyze, and generate human language. NLP draws upon the prin-
ciples of linguistics to understand the structures and patterns of human language. At the
same time, computational techniques such as machine learning and data science are used to
develop algorithms and models that can process natural language data. NLP has practical
applications in chatbots, sentiment analysis, machine translation, speech recognition, and
text summarization.

NLP tasks refer to the various problems that NLP seeks to solve, which can be broadly
classified into three main groups:

• Text classification: An NLP task categorizes [51] a given text into predefined categories
or classes based on its content. NLP models use supervised learning algorithms trained
on labeled examples to learn the relationship between the input text and the corre-
sponding categories. The trained model can then classify new, unlabeled text based
on its content. Text classification has numerous practical applications, such as spam
filtering, sentiment analysis, topic modeling, and language identification.

10

• Sequence Labeling: An NLP task [4] that involves assigning a label to each element of a
sequence of tokens, such as words or characters, in a given text. Sequence labeling aims
to identify and classify each token based on its context within the sequence. This task
is commonly performed using machine learning models, such as Hidden Markov Models
[27] and Conditional Random Fields [90], trained on labeled examples. Sequence label-
ing has various applications in NLP, such as named entity recognition, part-of-speech
tagging, and chunking. For example, named entity recognition involves identifying and
classifying entities in text, such as people, organizations, and locations. In contrast,
part-of-speech tagging involves assigning a grammatical category to each word in a
sentence, such as a noun, verb, or adjective.

• Sequence to sequence: an NLP task that involves mapping a sequence of tokens from one
domain to another. Sequence-to-sequence aims to generate an output sequence with
a different representation but maintains the same underlying meaning as the input
sequence. Sequence-to-sequence models are typically implemented using Recurrent
Neural Networks [53], such as Long Short-Term Memory [38] and Gated Recurrent
Unit [26] networks. Sequence-to-sequence models have a wide range of applications in
NLP, such as machine translation, text summarization, and conversational agents. For
example, machine translation involves mapping a sequence of words in one language to
a sequence of words in another. In contrast, text summarization involves generating a
shorter summary of a longer text sequence.

Several approaches have been proposed to solve these NLP tasks from different perspec-
tives:

• Rule-based systems [42] rely on predefined rules and patterns created by domain experts
to understand and analyze natural language. These rules and patterns are designed
to capture specific linguistic features of the input text, such as syntax, semantics, and
discourse, and use them to perform various NLP tasks. One of the main drawbacks of
rule-based systems is that they require significant manual effort to design and maintain
the rules, making them inflexible and difficult to scale.

• Classical machine learning algorithms [45] are commonly used in NLP to build models
that can learn patterns and relationships in data and perform various NLP tasks.
These algorithms typically require a large amount of labeled training data, which can
be time-consuming and costly. Additionally, feature engineering is often required to
extract relevant features from the input text, which can be a manual and error-prone
process. One of the main drawbacks of classical ML algorithms in NLP is that they
may struggle with the ambiguity and variability of human language, making them less
effective in certain contexts. However, these algorithms can be powerful tools when
applied appropriately and achieve high accuracy in various NLP tasks.

• Deep learning [53] has revolutionized the field of NLP, with many state-of-the-art re-
sults achieved using deep learning-based architectures. These architectures include re-
current neural networks, convolutional neural networks, encoder-decoder models, and
transformers. For example, domain-specific, character-level, and contextual word em-
beddings are often used to represent words as numerical values. Deep learning elimi-
nates the need for hand-crafted rules or features, as the models can automatically learn

11

the relevant patterns and relationships from the data. However, deep learning models
require large amounts of data and computing resources to achieve high performance,
and their lack of interpretability can make it challenging to understand their decisions.
Despite these challenges, deep learning methods continue to advance the field of NLP
and offer exciting opportunities for future research.

• Large language models [64] have emerged as a recent NLP breakthrough. These models
use deep learning techniques to train neural networks on massive amounts of text data,
enabling them to generate human-like language and perform various NLP tasks such as
translation, summarization, and question-answering. Unlike traditional deep learning
models, trained on specific tasks, these models can perform multiple tasks with a single
architecture, making them more versatile. However, large language models require
enormous training data and computing power, making them expensive to develop and
maintain. Furthermore, concerns have been raised about the potential environmental
impact of training such large models and ethical considerations related to the potential
misuse of the generated text. Nonetheless, using large language models is an exciting
area of research in NLP and is expected to continue advancing the field.

2.1.5 Incremental and Streaming Learning

Incremental learning [2] is a machine learning technique that enables a model to learn from
new data without retraining the entire model from scratch. Instead, this approach updates
the existing model with new data and knowledge, allowing it to improve gradually and adapt.
It is particularly useful when dealing with large or constantly changing datasets, as it reduces
the computational resources required for training and updating the model.

Streaming learning [36] is a specific type of incremental learning dealing with data arriving
in a continuous stream, such as sensor data or social media feeds. With streaming learning,
the model is updated in real-time as new data arrives, allowing it to adapt and learn from the
most recent information. This approach is especially beneficial for applications that require
real-time decision-making or immediate responses to changing data patterns.

Figure 2.4: Streaming Learning Pipeline.

12

Figure 2.4 illustrates the streaming and incremental learning pipeline, similar to the static
machine learning pipeline, in the three main data processing, training, and evaluation phases
shown in Figure 2.2. The difference is that these phases work concurrently and continuously
in streaming and incremental learning, as the data streams without an end.

One of the main challenges in streaming learning is dealing with the high volume and ve-
locity of data that needs to be processed and analyzed. Specialized algorithms and techniques
have been developed to address this challenge, such as online clustering [10] and feature se-
lection [93]. These techniques enable the model to efficiently update and adapt to new data
while minimizing the computational resources required.

Concept drift [95] is a phenomenon that occurs when the statistical properties of the
target variable or data distribution change over time. For example, this can happen when
the underlying data-generating process changes due to external factors such as seasonal vari-
ations, new trends, or shifts in customer behavior. Detecting and adapting to concept drift
is crucial in incremental learning as it can significantly impact the model’s performance.

Data streams [3] refers to a continuous and unbounded flow of data that arrives sequen-
tially over time, often in high volume and velocity. Streaming learning is particularly relevant
in data streams, where models must adapt and learn from new data in real time to maintain
their accuracy and relevance. Formally, a data stream is any ordered pair (s,∆) where:

• s is a sequence of tuples and

• ∆ is a sequence of positive real-time intervals.

2.1.6 Instance and Batch Incremental Learning

Instance incremental learning and incremental batch learning are two approaches [81] to
incremental learning.

Instance incremental learning [81, 67] is a type of incremental learning where the model
is updated with each new data instance. In other words, the model is trained on each new
data point as it arrives, and the parameters are updated in real-time. This approach is
useful in applications where new data arrive frequently, and the model must adapt quickly.
However, instance incremental learning can be computationally expensive as the model has
to be retrained on each new data instance.

Batch incremental learning [22] is a type of incremental learning where the model is
updated with batches of data instead of individual instances. The model is trained on a
batch of data, and the parameters are updated based on the average of the gradients from the
batch. This approach is more efficient than instance incremental learning as the model only
needs to be updated periodically, reducing the computational resources required. However,
incremental batch learning may not be as responsive to changes in the data as instance,
incremental learning, as the model is updated less frequently.

13

2.2 Word Representation

In NLP, representing words as mathematical objects that machine learning algorithms can
process is a crucial challenge due to the inherently unstructured nature of natural language
text. As a result, vector representations of words and documents have become a popular
solution to this problem. Nonetheless, the problem of text and document representation is
an ongoing area of research with various techniques proposed to address it, each with its
advantages and disadvantages.

In the subsequent sections, we review different text and document representation ap-
proaches. We commence by discussing the classic bag of words model, which represents
documents as a frequency count of the words they contain. However, this model has sig-
nificant semantic limitations, such as its inability to account for the order and context of
words. Subsequently, we delve into how distributional representations address these issues
by representing words as vectors based on the distributional hypothesis that words used in
similar contexts have similar meanings.

2.2.1 One Hot Representation

One hot text representation is a binary encoding method for representing textual data. In
this encoding scheme, each word or token in a corpus is represented by a unique binary vector
where only one element of the vector is set to 1 while all other elements are set to 0. The
length of the vector is equal to the vocabulary size, which is the total number of distinct
words or tokens in the corpus. For example, if a corpus has a vocabulary of 10,000 words,
each word will be represented by a vector of 10,000.

Representing a document in this model involves computing the vector representation for
each word in the document and then taking the average to obtain a single vector representa-
tion. Formally, let a document be a set of words {w1, w2, ..., wm} ∈ D, where m is the length
of the document. Suppose we have a dataset of n documents {d1, d2, ..., dn} ∈ D, where |V | is
the number of distinct words or tokens in the vocabulary (which we will denote by V). The
model consists of vectors v ∈ R|V |, where each vector dimension is a one-hot encoded-word
vector. For example, we can see how the word dog would be represented in formula 2.2:

v⃗ =

ant
...
...
cat
dog

dinosaur
...

zebra

→

0
...
...
0
1
0
...
0

(2.2)

Then, to represent each document di ∈ D, the one-hot vector for each word in di is
averaged, as shown in the formula 2.3:

14

v⃗ =
1

|D|

|D|∑
vi∈D

vi (2.3)

One advantage of the one-hot encoding technique for representing text is its ability to
accommodate documents of varying lengths in a unified vector space. However, a major
drawback of this approach is its inability to capture semantic and syntactic relationships be-
tween words and documents. Furthermore, when the vocabulary size is large, the resultant
high-dimensional vectors pose computational challenges for many machine learning models,
as processing such vast amounts of data demands significant computational resources. These
limitations have motivated the development of alternative techniques, such as word embed-
dings, which offer more efficient and meaningful representations of textual data, which will
be discussed below.

2.2.2 Distributional Hypothesis and Distributional Representations

As we point out in the last section, the one-hot representation is a widely used technique for
document representation due to its simplicity and efficiency in capturing the vocabulary of
a document set. However, this technique has a fundamental limitation: the representations
do not capture the meaning of words, preventing the computation of relationships between
them. For instance, the one-hot representation of ”cat” is entirely different from that of
”dog” or ”pizza,” even though ”cat” and ”dog” are both animals. This means the model
cannot recognize any underlying relationship between these words based on their meanings,
thus restricting its utility for a range of natural language processing tasks.

The Distributional Hypothesis [41] has emerged as a potential solution to address this
issue. This hypothesis posits that words with the same context tend to have similar meanings
or connotations. Alternatively, a word can be characterized by the other words with which it is
commonly associated. This idea has led to the development of Distributional Representations,
which encode the meaning of words by capturing their context in vectors.

One popular method for creating Distributional Representations is using word-context
matrices. In a large text corpus, these matrices capture the frequency of co-occurrences
between words and their context.

2.2.3 Word Context Matrices

Word-context matrices are a class of models that aim to capture the distributional properties
of words by leveraging the co-occurrences between them. Essentially, each row in the matrix
represents a word, while each column represents a context word. Therefore, each entry in
the matrix’s (i, j) position reflects the degree of association between a word and its context.
This matrix thus serves as a comprehensive record of the distributional patterns of words in
a corpus. Analyzing these patterns makes it possible to derive meaningful representations of
words that capture their semantic relationships with one another.

15

Co-ocurrence counts

One approach to computing the strength of association between a target word wi and the
words in its context cj is to count their co-occurrences across all documents in the corpus [91].
In this method, the context is defined as a window of words surrounding the target word, and
its size, k, is a parameter that the user can set. If the context’s vocabulary is the same as
the target words, the resulting word-context matrix will be size |V | × |V |. Specifically, each
word is represented as a sparse vector in a high-dimensional space, where the dimensionality
corresponds to the vocabulary size. The vector represents the weighted bag of contexts in
which the word appears.

For example, the Table 2.1 represents a word-context matrix for three documents:

• I like dogs.

• I like burgers.

• I have a dog.

Table 2.1: Example of a word-context matrix

I like dogs burgers have a dog
I 0 2 0 0 1 0 0

like 2 0 1 1 0 0 0
dogs 0 1 0 0 0 0 0

burgers 0 1 0 0 0 0 0
have 1 0 0 0 0 1 0

a 1 0 0 0 1 0 1
dog 0 0 0 0 0 1 0

It is important to note that the number of contexts for a given target word is generally
defined by a user parameter called the window size. For example, in Table 2.1, the window
size was set to one, capturing the context of one word to the left and one to the right of each
target word.

In the example presented in Table 2.1, the vectors associated with the words “dog” and
“burgers” are the same, despite representing different things. This is a consequence of the
distributional hypothesis, which suggests that words that tend to appear in similar contexts
have similar meanings. However, this issue can be addressed by adjusting the window size
and working with larger documents.

The count-based word-context matrix method effectively understands the semantic rela-
tionships between words based on their contexts. However, the method heavily relies on word
frequencies in a corpus, which can result in unbalanced vectors. This is because common
words such “and, “to,” and “the” tend to capture a large number of contexts, even though
they are not the most informative words in the corpus. As a result, word-context pairs like
“a dog” and “the dog” receive greater importance in the model than more descriptive pairs
like ”big dog” and ”black dog,” which paradoxically convey more information.

16

To address this issue, we discuss the Positive Point-Wise Mutual Information.

Positive Point-Wise Mutual Information

Pointwise Mutual Information (PMI) is a statistical measure that captures the strength of the
association between two words in a corpus. PMI is calculated by comparing the probability
of the co-occurrence of two words with their probabilities, which is given by the formula 3.1:

PMI(x, y) = log2

(
P (x, y)

P (x)P (y)

)
(2.4)

Where:

• x represents a target word.

• y represents the context associated to x.

• P (x, y) the probability of the co-occurrence of x and y.

• P (x) the probability of x.

• P (y) the probability of y.

However, for a given corpus of text, the formula 3.1 can be reformulated to:

PMI(w, c) = log2

(
count(w, c) · |D|

count(w) · count(c)

)
(2.5)

The values count(w, c), count(w), and count(c) represent the number of times a word-
context pair (w,c), the word w, and the context word c appear in the corpus, respectively.
The symbol |D| represents the total number of tokens in the corpus.

Positive Pointwise Mutual Information (PPMI) is a PMI variant that addresses unbal-
anced vectors in the count-based word-context matrix method. PPMI assigns higher weights
to rare word-context pairs and lower weights to common ones. This is achieved by subtract-
ing the logarithm of the probability of a word-context pair occurring by chance from the
logarithm of its observed frequency.

Since PPMI is a variant from the formula 2.5 is calculated as follows:

PPMI(w, c) = max(PMI(w, c), 0) (2.6)

17

The max function ensures that negative values are set to zero, eliminating the influence
of negatively correlated pairs.

Using PPMI, rare word-context pairs that convey more information about the meaning
of words receive higher weights, while frequent, less informative pairs receive lower [25].
This results in a more balanced and informative word-context matrix, which can be used
to train better machine learning models for natural languages processing tasks such as text
classification, sentiment analysis, and machine translation.

Problems of the word-context matrix methods

While word-context matrices provide better semantic representations than one-hot vectors,
they suffer from the challenge of high dimensionality. Working with and storing these ma-
trices is memory-intensive, and self-learning classification models struggle with such high-
dimensional inputs.

To address this issue, dimensionality reduction techniques such as Principal Component
Analysis [1] can reduce the representations’ dimensionality.

Principal Component Analysis

Principal Component Analysis (PCA) [1] is a widely used technique for dimensionality re-
duction in machine learning. Its goal is to find a lower-dimensional representation of a
high-dimensional dataset that captures the most important information.

Given a dataset X ∈ Rn×p with n data points and p features, the PCA algorithm can be
described as follows:

First, the data is normalized by subtracting the mean vector µ⃗ ∈ Rp from each feature so
that the data is centered around 0:

X̄ = X − µ⃗

Next, the covariance matrix of the normalized data is calculated, which measures the
degree to which the features co-vary:

C =
1

n− 1
X̄T X̄

The eigenvectors u⃗1, u⃗2, . . . , u⃗p of the covariance matrix C are then computed, along
with the corresponding eigenvalues λ1, λ2, . . . , λp. These eigenvectors represent the principal
components of the data, and the eigenvalues represent the variance of the data in the direction
of the eigenvectors:

18

Cui = λiu⃗i, i = 1, 2, . . . , p

The eigenvectors are usually sorted in descending order based on their corresponding
eigenvalues so that the first few eigenvectors capture the most important information in the
data.

Finally, the lower-dimensional representation of the data can be obtained by projecting
the normalized data onto the first k eigenvectors:

Z = X̄Uk,

where Uk = [u⃗1, u⃗2, . . . , u⃗k] is the matrix containing the first k eigenvectors, and Z ∈ Rn×k

is the resulting lower-dimensional representation of the data.

It is important to note that traditional PCA follows a batch-learning approach, which may
not be suitable for streaming environments. In such scenarios, Incremental PCA [9] plays
a more prominent role in dimensionality reduction, as it considers sources of information in
the form of data streams. This algorithm will be important in the next chapters.

Incremental PCA

Incremental PCA [83] is a variation of the traditional PCA algorithm that allows for efficient
computation of principal components in scenarios where the data arrives in a stream or when
dealing with large datasets that cannot fit entirely in memory.

In the traditional PCA, the entire dataset is required to compute the covariance matrix,
which can be computationally expensive and memory-intensive for large datasets. Incre-
mental PCA addresses this limitation by processing the data incrementally, one mini-batch
or data instance at a time, and updating the principal components iteratively as new data
arrives.

Generally, the incremental PCA algorithm typically follows these steps:

• Initialize: Start with an initial estimate of the principal components. This can be an
empty set or a reduced-rank approximation obtained from a smaller subset of the data.

• Stream data: Process the data in small batches or individual instances. For each
batch, update the estimates of the principal components based on the new data.

• Update covariance matrix: Compute the covariance matrix incrementally using the
new batch data and update the running estimates of the principal components.

• Compute principal components: Use the updated covariance matrix to compute
the principal components. This can be done using singular value decomposition (SVD)
[40] or eigenvalue decomposition.

19

• Repeat: Stream the data, update the covariance matrix, and recompute the principal
components until convergence or a desired number of iterations.

One advantage of incremental PCA is that it can handle streaming data or large datasets
with limited memory resources. In addition, it avoids storing the entire dataset in memory,
making it more scalable and suitable for real-time applications.

However, it’s important to note that incremental PCA may introduce some approximation
errors compared to the traditional PCA algorithm that operates on the entire dataset. This
is because the approximation quality depends on the mini-batch size and the number of
iterations performed during the streaming process.

Another direction the natural language processing community has taken is to use dis-
tributed representations. These representations encode meaning in a lower-dimensional space,
with each dimension representing a specific semantic feature. Distributed representations en-
able the efficient processing of large amounts of text and are now commonly used in neural
network-based models for various natural language processing tasks.

2.2.4 Distributed Representation or Word Embeddings

Distributed representations [63], also known as word embeddings, are a collection of models
that capture the meaning of words by mapping them to dense, continuous vectors with low
dimensionality. These vectors are based on the distributional hypothesis, meaning that they
represent words based on their contextual usage. Therefore, words frequently appearing in
similar contexts will have similar vector representations.

Word embeddings are typically trained using neural networks on large corpora of docu-
ments. During training, the semantic meaning of words is spread across the dimensions of the
vectors, creating distributed representations. Although the dimensions of these vectors are
not easily interpretable, these models are generally more powerful than previous count-based
models.

Despite their lack of interpretability, word embeddings have become a central component
in many systems due to their ability to improve performance on various NLP tasks. Their
success has led to the development of many different algorithms for training word embeddings
and incorporating them into NLP models.

Obtaining Word Embedding Models

There are two main approaches for obtaining word embeddings:

1. Embedding layers: This approach uses an embedding layer in a task-specific neural
network architecture trained from labeled examples, such as sentiment analysis. This
approach allows the embeddings to be explicitly optimized for a downstream task.

20

2. Pre-trained word embeddings: This approach involves creating an auxiliary predictive
task from unlabeled corpora, such as predicting the next word in a sentence, in which
word embeddings will naturally arise from the neural network architecture. Large-scale
pre-trained language models like OpenAI GPT and BERT are particularly effective
at this approach. The resulting embeddings can then be used in downstream tasks,
possibly with fine-tuning.

These approaches can be used in isolation but can also be combined. For example, one
can initialize an embedding layer of a task-specific neural network with pre-trained word
embeddings obtained with the second approach. This can improve the model’s performance,
especially when limited to labeled training data.

Word2Vec

Word2Vec is a neural network-based model for learning distributed representations of words.
It was developed by Mikolov et al. [63]. The model is trained on large amounts of text data
to learn vector representations of words in a continuous vector space, where each dimension
represents a particular feature.

Word2Vec uses two architectures for learning word embeddings: Continuous Bag-of-
Words (CBOW) and Skip-gram [63]. In the CBOW architecture, the model predicts the
current word given a context of surrounding words. In contrast, in the Skip-gram architec-
ture, the model predicts the surrounding words given the current word. Both architectures
use a shallow neural network with a single hidden layer to learn the vector representations.

The optimization method used in Word2Vec is based on SGD [8]. The objective function
is to maximize the likelihood of the observed word-context pairs in the training data. This is
achieved by minimizing the negative log-likelihood [73] of the observed pairs. The negative
log-likelihood is equivalent to the cross-entropy loss [56] between the predicted and observed
probabilities of the word-context pairs.

To speed up the training process and reduce memory requirements, Word2Vec uses a
technique called negative sampling [35]. Negative sampling involves randomly selecting a
small number of negative samples for each observed word-context pair and updating the
model only on these pairs. This is more efficient than updating the model on all possible
word-context pairs, which can be computationally expensive.

Another optimization method used in Word2Vec is hierarchical softmax [68]. Hierarchical
softmax reduces the computational complexity of computing the softmax probability distri-
bution by organizing the vocabulary into a binary tree. This allows for faster computation
of the probability distribution and faster model training.

It is worth noting that the term ”Word2Vec” is often used interchangeably to refer to both
the software and the pre-trained models provided by its creators. The pre-trained Word2Vec
embeddings available for use are based on the skip-gram model with negative sampling, one
of the two architectures used by Word2Vec to learn word embeddings.

21

Skip-Gram Model

The skip-gram model [63] is a popular technique used in natural language processing to
generate word embeddings. It involves training a shallow neural network that consists of
a single hidden layer with no activation function. Next, the network is trained to predict
the context words (words in a context window) given a central word that shifts along the
training corpus. During training, the network learns co-occurrence statistics between central
and context words. When the training process is finished, the resulting neural network
weights are used as vectors for the token inside a vocabulary.

Figure 2.5: Diagram of Skip-Gram model.

In Figure 2.5, we have a high-level description of the skip-gram architecture. Subsequently,
we will delve into the architecture and training process.

The neural network takes as inputs the central word and the surrounding words within
a fixed window size of k. Each word in the vocabulary of size V is represented as a one-hot
encoded vector, which serves as the input and output layer of the network. The hidden layer
comprises N neurons with |V | parameters, one for each possible input word.

The output layer has |V | neurons, each with N weights, corresponding to the possible
output words in the vocabulary. The activation function used in the output layer is softmax,
which computes the probability distribution over all possible output words given the input
word.

The entire training corpus is used to iterate over central words and their context windows
to train a neural network for learning word embeddings. The central word and hidden
layer information are then used to predict the context words. Finally, these predictions are
compared to the actual context words to adjust the network weights via backpropagation

22

[8]. This training process aims to create a useful and meaningful distributed representation
of the words in the corpus.

After training, the hidden layer weight matrix is extracted as the word embeddings. These
embeddings capture relationships between words in the corpus and can be used as features for
various natural language processing tasks, such as language modeling and text classification.
Using word embeddings can significantly enhance the efficiency and accuracy of such tasks.

While the output weight matrix does contain contextual information about the words, it
is often not used in this model. Instead, it is discarded or used for other purposes, such as
clustering analyses or word similarity calculations.

Let’s consider a document corpus consisting of a sequence of words: w1, w2, w3, ..., wt,
and a size window k. We use the letter w to represent the target word, and the letter c to
represent the context words. For instance, the words in the context c1 : k of the target word
wt are denoted by (wt−k/2, wt−1, wt+1, ..., wt+k/2) (assuming k is even).

The Skip-gram model aims to maximize the average log probability of the context words
given the target words. In other words, the model tries to learn how likely it is for each
context word to appear in the vicinity of the target word, which is given by the formula 2.7:

LSG = − 1

n

n∑
i=1

n∑
|j|≤c

log p(wi+j|wi) (2.7)

Where wi is a target word, and wi+j is a context word, the context words are obtained
by shifting a sliding from left to right a window of size 2w. The expression log p(wi+j|wi)
represents the probability that the word wi+j is a context of the word wi.

p(wi+j|wi) =
exp(⃗twi

· c⃗wi+j
)∑

w∈V exp(⃗twi
· c⃗w)

(2.8)

Where t⃗w and c⃗w represent the target and context words, V represents the vocabulary
set.

While maximizing the above function is believed to lead to good embeddings, it poses a
significant computational challenge. The reason is that computing P (cj|w) is computationally
expensive since the summation over all context words, which is typically a large number,
involves the exponential function exp(⃗twi

· c⃗w).

To overcome this challenge, the skip-gram model has two variations: hierarchical softmax
and negative sampling. This thesis will only describe negative sampling, while hierarchical
softmax will not be discussed.

23

Skip-Gram with Negative Sampling

The Skip-gram model with Negative Sampling [34, 63] is a neural network architecture that
learns high-quality word embeddings from a large corpus of text data. The objective of this
model is to predict the context words given a target word or vice versa.

In the Skip-gram model with Negative Sampling, a target word is represented by a vector
of real-valued numbers, called an embedding. Similarly, each context word is represented by
a separate embedding vector. During training, the model learns to update these embeddings
to maximize the probability of correctly predicting the context words for a given target word
or vice versa.

To achieve this, the model uses negative Sampling to distinguish between “good” and
“bad” word-context pairs. For a given target word, the model randomly samples a small
number of negative examples (i.e., words that do not appear in the context of the target
word).

The probability of a word-context pair (w, ci) being positive or negative is determined
using a sigmoid function:

P (C = 1|w, ci) =
1

1 + exp(⃗tw · c⃗wi
)

(2.9)

where c⃗wi
and t⃗w are the embeddings of the context word c and the target word w,

respectively, the dot product of these embeddings is transformed into a probability score
using the sigmoid function.

The objective function to be optimized is to maximize the probability of correctly clas-
sifying positive examples as positive and negative examples as negative. This function is
computed using the following formula:

LSG = − 1

n

n∑
i=1

n∑
|j|≤c

ψ+
wi,wi+j

+ kEv∼q(v)[ψ
−
wi,v

] (2.10)

Where ψ+
w,v = log σ(⃗tw · c⃗v) and ψ−

w,v = log σ(−t⃗w · c⃗v). σ(x) correspond to the sigmoid
function. The negative samples are drawn from a probability distribution q(v) called the
unigram table. This distribution q(v) is built from a corpus according to the frequency
f(v) for each v in V , therefore q(v) ∝ f(v)α. α is a smoothing parameter between 0 and 1
(0 < α ≤ 1).

The first term in the objective function 2.10 aims to maximize the probability of correctly
classifying positive examples. In contrast, the second term aims to minimize the probability
of incorrectly classifying negative examples. The embeddings are updated during training
using backpropagation to maximize this objective function 2.10.

24

Continuous Bag of Words

The Continuous Bag-of-Words (CBOW) [34, 63] model is a neural network architecture that
learns high-quality word embeddings from a large corpus of text data. The objective of this
model is to predict a target word given the context words surrounding it.

In the CBOW model, each word is represented by a vector of real-valued numbers, called
an embedding. For example, let the vocabulary size be V and wi be the ith word in the
vocabulary. Then, the embedding for the ith word is a d-dimensional vector denoted as vi.

Given a target word wt and its context words ct−m, ..., ct−1, ct+1, ..., ct+m, where m is the
context window size, the objective of the CBOW model is to maximize the probability of
correctly predicting the target word for a given context. To achieve this, the model takes the
embeddings of the context words as inputs and computes the average of these embeddings.
The resulting vector is then passed through a feedforward neural network with a single hidden
layer, which outputs a probability distribution over all the words in the vocabulary. In Figure
2.6, we have a high-level description of the CBOW architecture.

Figure 2.6: Diagram of CBOW model.

Formally, let c⃗ be the context vector computed as the average of the embeddings of the
context words (i.e., c⃗ = 1

2m

∑2m
i=1 vt−m+i), where vi is the embedding vector of the ith context

word. The probability distribution over the vocabulary is then computed as follows:

P (wt|wt−m, ..., wt−1, wt+1, ..., wt+m) = softmax(Uc+ b) =
exp(uTwt

c+ bwt)∑V
i=1 exp(uTi c+ bi)

(2.11)

25

Where U ∈ R|V |×d is a matrix of weights, b⃗ ∈ R|V | is a bias vector, ui is the ith row of
U , and bi is the ith element of b⃗. The softmax function converts the neural network output
into a probability distribution over all the words in the vocabulary.

The objective function to be optimized is to maximize the probability of correctly predict-
ing the target word given its context. This function is computed using the following formula
2.12:

L = − logP (wt|ct−m, ..., ct−1, ct+1, ..., ct+m) (2.12)

During training, the objective function is optimized through backpropagation to update
word embeddings. However, CBOW and Skip-Gram models encounter similar computational
issues when processing large vocabularies. Therefore, CBOW can also be optimized through
Negative Sampling and hierarchical softmax discussed previously.

2.2.5 Other methods

GloVe

The GloVe (Global Vectors) [77] method is a word embedding technique that combines the
advantages of both word-context matrix and distributed embedding methods. It is based on
the observation that ratios of word-word co-occurrence probabilities have a semantic meaning
and can be used to learn word embeddings.

The first step in the GloVe method is to create a word-context matrix that captures the
co-occurrence probabilities of words in a given context window. Let X be a word-context
matrix of size V × V , where V is the vocabulary size. Each entry Xij of the matrix is the
number of times word j appears in the context of word i.

The second step is to define a word embedding function that maps each word wi to a
low-dimensional vector v⃗i. Let v⃗i be the embedding vector of word i, and let u⃗j be the context
vector of word j. The aim is to find the embeddings such that the dot product of a word
and its context vector is proportional to the log of their co-occurrence probability:

u⃗Tj v⃗i ∝ log(Xij)

The GloVe method introduces a weighting function f(Xij) that assigns a weight to each
co-occurrence count to achieve this goal. The weighting function is defined as follows:

f(Xij) =

{
(Xij/xmax)α if Xij < xmax 1

otherwise

where xmax is a maximum co-occurrence count, and α is a weighting parameter that
controls the weight given to rare vs. frequent co-occurrences. The choice of xmax and α
depends on the specific application and can be determined through experimentation.

26

Using this weighting function, the GloVe method defines a loss function that measures
the difference between the dot product of a word and its context vector and the logarithm of
their co-occurrence probability:

J(u⃗j, v⃗i, b⃗j, b⃗i) = f(Xij)(u⃗Tj v⃗i + b⃗j + b⃗i − log(Xij))2

where b⃗i and b⃗j are bias terms for word i and context word j, respectively. The goal is to
minimize this loss function using gradient descent to learn the word and context embeddings.

2.3 Intrinsic NLP Tasks

Evaluating the quality of word embeddings poses a significant challenge due to various factors,
and there is currently no standardized evaluation methodology in place. The field of word
embedding is still open, and researchers are continuously working to develop more reliable
and standardized methods for evaluating their performance. Some of the reasons why it is
not straightforward to evaluate word embeddings include the following:

1. Lack of gold standards: No universally accepted gold standard for evaluating word
embeddings exists. Different evaluation metrics and datasets may be appropriate for
different tasks, and researchers may have different opinions on which metrics are most
important. This can make it difficult to compare the performance of different word
embedding models.

2. Context dependency: Word embeddings depend highly on the context in which they are
learned and used. Therefore, their quality may vary depending on the text corpus used
for training, the parameters used for the model, and the specific context in which they
are applied. Defining what constitutes a “good” word embedding model is challenging.

3. Difficulty in defining what word embeddings should capture: There is no clear con-
sensus on what word embeddings should capture. While some researchers focus on
capturing semantic relationships between words, others may be more interested in cap-
turing syntactic relationships. Defining what constitutes a “good” word embedding
model can be difficult.

4. Subjectivity: The evaluation of word embeddings can also be subjective, as different
researchers may have different criteria for evaluating the quality of word embeddings
based on their research interests and goals.

5. Dependence on downstream NLP tasks: In many cases, the performance of word em-
beddings may be evaluated by their performance on downstream NLP tasks such as
sentiment analysis or text classification. However, the performance of these tasks may
be influenced by factors other than the quality of the word embeddings themselves,
such as the quality of the training data or the specific algorithms used for the task.

There are two main categories of evaluation schemes for word embeddings: extrinsic and
intrinsic evaluation. In extrinsic evaluation, word embeddings are utilized as input features

27

for a downstream task, and the resulting changes in task-specific performance metrics are
measured. Examples of such tasks include part-of-speech tagging and named-entity recogni-
tion, which are not the focus of this thesis. On the other hand, intrinsic evaluation involves
directly testing for syntactic or semantic relationships between words. These tasks typically
entail selecting a predefined set of query terms and evaluating the corresponding semantically
related target words.

This thesis focuses on evaluating word embeddings through intrinsic NLP tasks. These
tasks can be classified into four categories:

• Relatedness o word similarity: Word similarity [32] measures the degree of relat-
edness or likeness between two words. It is often calculated based on the similarity of
their word embeddings, which are vector representations of words learned from a large
corpus of text. For example, consider the words “car” and “automobile.” These two
words have a high degree of similarity, as they refer to the same type of vehicle. When
represented as word embeddings, the “car” and “automobile” vectors would have a high
cosine similarity, indicating their semantic similarity. On the other hand, the words
“car” and “banana” have a low degree of similarity, as they are unrelated in meaning
and would have dissimilar word embeddings.

• Analogy: The word analogy task evaluates word embeddings by testing their ability to
capture semantic relationships between words through arithmetic operations on their
embedding representations. The task involves solving analogies like “a is to b as x is
to y,” where a, b, x, and y are different words. The most famous example of this task
was demonstrated by Mikolov et al. [18], who showed that by operating “king - man
+ woman” on the embeddings of these words, the resulting vector was most similar to
the embedding of “queen.”

• Categorization: The categorization task [44] involves clustering words based on their
semantic meaning to group them into different categories. This is accomplished by
clustering the corresponding word vectors of all the words in a given dataset and then
evaluating the purity of the resulting clusters concerning the labeled dataset.

• Selectional preference: The selectional preference task [33] focuses on determining
the typicality of a noun for a given verb, either as a subject or as an object. For
instance, in the sentence “people eat,” the noun “people” is a typical subject for the
verb “eat,” whereas in the sentence “we rarely eat people,” the noun “people” is not a
typical object for the verb “eat.”

2.4 Streaming in Word Embedding models

Streaming learning in word embeddings models [20, 46, 61, 76, 75] involves continuously
updating the word embeddings as new data becomes available. This is achieved through
incremental updates to the embedding vectors based on each new data point. This approach
has several advantages over traditional, offline word embedding models such as:

28

• Adaptability to changing data: Streaming learning allows the model to adapt to changes
in the data distribution over time. This means the embeddings can remain relevant
and accurate even as new words and phrases enter the language.

• Real-time processing: Streaming learning enables real-time data processing, allowing
the model to handle large volumes of data as they arrive.

However, streaming learning in word embeddings models can also pose some challenges:

1. Memory and computational requirements: As the model continuously updates its em-
beddings, it requires additional memory and computational resources to store and pro-
cess the data. Making the model slower and more computationally intensive [22].

2. Concept drift: Streaming learning models may experience concept drift [95], where
the meaning of a word changes over time. For that reason, the embeddings become
outdated or inaccurate.

3. Data imbalance: Streaming learning models may also be affected by data imbalance
[57], where certain words or phrases are overrepresented. Leading to bias in the em-
beddings and affecting their accuracy.

However, various word embeddings have been proposed to tackle the streaming and incre-
mental paradigm challenges. Nevertheless, this is still a nascent and dynamic area of research
due to the absence of standardization in evaluation methods, benchmark datasets, and soft-
ware implementation. Moreover, the lack of such standardization makes it challenging to
leverage incremental word embeddings to their full potential in real-world natural language
processing applications in both academic and industrial settings.

2.5 Related Work

In this section, we review the literature on the three main aspects on which this work is
based: 1) incremental WE models, 2) stream machine learning libraries, and 3) intrinsic
evaluation of WE. First, we cover the models implemented in our framework and others,
such as Incremental GloVe [77], which is not added to our library but will be included in the
next version. Second, we review the main libraries the research community uses for machine
learning of data streams. Finally, we discuss intrinsic evaluation approaches for WE.

2.5.1 Incremental Word Embedding Models

As we pointed out previously, WE can be divided into count-based approaches, and dis-
tributed methods based on the distributional hypothesis [41] (i.e., words appearing in the
same contexts tend to have similar meanings). According to this classification, we imple-
mented the following models discussed below:

29

The Incremental Word Context Matrix model (proposed by Bravo-Marquez et al. [20])
is a count-based method that constructs a word-context matrix of size V × C, where V is
the number of words contained in the vocabulary and C is the number of contexts around
the target words (obtained from a surrounding window of fixed size). Each matrix cell
encodes the association between a target word and a context, computed using a smoothed
positive point-wise mutual information (PPMI) score [60]. To keep memory usage constant
throughout the stream, it is necessary to keep fixed the number of words composing the
vocabulary, the contexts, and the counters calculating the PPMI weights. When there is no
space for a new word or context, the existing ones are replaced according to a given criterion
(less frequent word/context, older word/context, among others).

Incremental skip-gram with negative sampling (ISG) is based on the neural network ar-
chitecture proposed by Kaji and Kobayashi [46]. This model is inspired by the original
skip-gram from the Word2Vec library (Mikolov et al. [63]). Kaji and Kobayashi develop
an incremental version of negative sampling; their algorithm builds a unigram table that
incrementally updates the words frequencies and the noise distribution. The authors use
the Misra Gries algorithm [65] to allocate words dynamically in a finite vocabulary using
constant memory throughout the stream.

Other methods not implemented yet but to be added in the future are:

SpaceSaving Word2Vec (SSW) is a work similar to ISG but developed independently by
May et al. [61]. The main differences are:

• ISG uses the Misra Greis algorithm [65] for dynamic word allocation, while SWW
employs the Space Save algorithm [62], which counts the most frequent elements in a
data stream.

• SSW uses the original unigram sampling table to estimate the negative distribution;
Kaji and Kobadashi proposed an original algorithm [46] for this purpose.

The incremental Glove [76] model follows the same idea as the original GloVe [77]; cal-
culates the global statistics with a word-context matrix of co-occurrences, and reduces the
matrix dimensionality by training a square-root loss function. The main difference is that
the incremental version modifies the loss function into a recursive scheme that depends on
old and new data.

2.5.2 Stream Machine Learning Libraries

As discussed above, in the stream machine learning setting, models learn continuously from
data streams that evolve over time. This learning can typically be done in two ways: 1)
training one example at a time or 2) training by mini-batches of examples. An important
difference with the standard machine learning paradigm is that stream models cannot per-
form data preprocessing operations that require full access to the data (e.g., vocabulary
extraction). Note also that stream machine learning is very similar to the incremental or

30

online learning paradigms in machine learning, but incorporates some additional constraints,
such as those listed in Section 1.

Massive Online Analysis (MOA), developed by Bifet et al. [15], is a Java software pack-
age that implements numerous machine learning algorithms for training and evaluation from
evolving data streams. In addition, Bifet et al. developed MOATweetReader [16], an ex-
tension to MOA for analyzing tweets in real time, detecting changes in word distribution,
performing summary statistics, and sentiment analysis.

River [67] was formed from the union of two similar predecessor projects, Creme [39], and
scikit-multiflow [66], which provides Python implementations of the main machine learning
algorithms for data streams for tasks such as classification, regression, and clustering, as well
as other functionalities. In standard machine learning, multidimensional arrays are typically
used as the primary data structure for data representation. However, since streaming data
can come up at any time, River uses dictionaries as a more flexible and faster alternative.
To optimize mathematical operations between dictionaries, River relies on its own dictionary
data structure, called VectorDict, which is implemented in Cython [13].

Note that none of these libraries are designed to perform representation learning for
unstructured data, such as word embeddings, in an incremental fashion.

2.5.3 Intrinsic Evaluation

WE intrinsic evaluation is a family of evaluation techniques for measuring the syntactic and
semantic properties captured by these vectors that include three types of tasks: word similar-
ity (i.e., whether the similarity between two words vectors correlates with a human judgment
of relatedness), analogies (i.e., when relations in the form of “a is to b as c is to d” can be
obtained from arithmetic operations on the vectors), and categorization (i.e., when groups of
words are aligned with predefined categories, such as animals). These evaluations are often
combined to benchmark different WE algorithms, the corpora on which they are trained, and
the hyperparameter settings [86]. The Word Embeddings Benchmark1 [44] is an open-source
package that brings together all intrinsic evaluations into a unified interface to facilitate the
evaluation and comparison of these resources. However, this evaluation approach has its
detractors, Gladkova and Drozd [33] argued that intrinsic evaluation ignores key features
of distributional semantics (e.g., polysemy), and does not always correctly determine how a
word embedding would perform in a downstream application.

It is important to note that these evaluations are designed for a standard machine learning
setting (i.e., the evaluation is performed after the training is completed). In this work, we
attempt to adapt them to a streaming setting.

1https://github.com/kudkudak/word-embeddings-benchmarks

31

Chapter 3

RiverText Foundations

As mentioned in previous chapters, incremental WE training is the process of learning dy-
namic word vectors from continuously arriving streams of text, such as tweets. The overall
process in which these vectors are trained in our framework is as follows:

1. Connect to a continuous source of a text data stream (e.g., Twitter).

2. Tokenize the text and traverse its words.

3. If a new word is found, it is added to the vocabulary and a new vector is assigned to it.

4. If the word is known, its corresponding vector is updated according to its context (i.e.,
its surrounding words).

5. At any time during training, getting the vector associated with a vocabulary word is
possible.

RiverText users can modify the incremental word embedding learning algorithm (depend-
ing on available implementations) and select a sketching algorithm to dynamically allocate
new words to the vocabulary. This is an important component of our framework since it is
impossible in a streaming setting to determine the vocabulary size in advance, as it is usually
done in standard machine learning. The current version of the software only implements
Misra Gries’ algorithm [65], but we plan to add more algorithms in the future, such as the
Space Saving algorithm [62].

This chapter discusses the principal components utilized to standardize and adapt the
incremental WE algorithms, such as the Misra Gries algorithm, and the incremental learning
paradigms employed. We then present our evaluation scheme for assessing the performance of
the incremental WE model using intrinsic NLP tasks. Finally, from a conceptual perspective,
we review the specific characteristics of each incremental WE model used to adapt our library.

32

3.1 Misra Greis Algorithm

The Misra-Gries algorithm is a streaming algorithm for frequent item counting in a data
stream, which Misra and Gries [65] proposed. The algorithm maintains a set of counters,
each associated with an item in the stream. When a new item is read from the stream, if the
item is already in the set of counters, its corresponding counter is incremented. Otherwise,
if the counters are not yet full, a new counter is added to the set with an initial value of 1. If
the counters are already full, all counters are decremented by 1, and any counters that reach
0 are removed from the set.

At the end of processing the stream, the algorithm returns the set of counters, which
should contain only the items that frequently occur in the stream.

The Misra-Gries algorithm has a time complexity of O(nk), where n is the length of the
input stream and k is the number of distinct items in the stream. This algorithm is commonly
used in distributed systems where the data is too large to fit in a single machine’s memory.
However, a set of machines can each maintain a subset of the counters, which can later be
combined to get the final result.

Algorithm 1: IWCM model method.

Input: vocab size V, Vocab vocab, Count counter
Output: An updated counter

1 while batch in ST do
2 for tweet in batch do
3 tokens = tokenize(tweet)
4 for token in tokens do
5 if token not in vocab and |vocab| < v then
6 addToVocab(vocab, token)
7 updateCount(counter, token)

8 else if token in vocab then
9 updateCount(counter, token)

10 if |vocab| = v then
11 restByOneToAllCounts(counter)
12 words = removeElemEqualOne(counter)
13 removeKeys(vocab, words)

In our implementation, the Misra Greis algorithm tracks the most frequent words in
the entire data stream once the vocabulary becomes full. If a token is not already in the
vocabulary, we add it and set its count to one. If the word is already in the vocabulary,
we increment its count by one. When the number of words in the vocabulary reaches the
maximum size allowed, we decrease the count of all words by one and remove them from the
vocabulary if their count becomes one, ensuring that there is always room for new words.
The algorithm used for this implementation can be found in Algorithm 3.1.

As previously mentioned, we plan to incorporate additional options and algorithms for

33

tracking new words in our implementation, including the Space Saving algorithm [62] and
Sketching techniques [71], which are known to effectively track new words in data streams.

3.2 Incremental Learning Approaches

RiverText implements two incremental learning approaches: 1) instance incremental and 2)
batch incremental learning, which are discussed below.

In Instance Incremental learning, our WE parameters are updated with every training
instance (e.g., a tweet) and discarded after training, as shown below:

Listing 3.1: Example of learn one method using the Incremental WCM model. The pa-
rameters of the WordContextMatrix class are the vocab size, window size, and context size,
respectively.

from r i v e r t e x t . models import WordContextMatrix
from r i v e r t e x t . u t i l s import TweetStream

from torch . u t i l s . data import DataLoader

t s = TweetStream (”/path/ to / tweets . txt ”)
wcm = WordContextMatrix (

vo cab s i z e =100000 ,
window size=3,
c o n t e x t s i z e =1000

)
data loader = DataLoader (ts , b a t ch s i z e =1)

for tweet in data loader :
wcm. l e a rn one (tweet)

In this case, the text stream is simulated from a file of tweets (one tweet per line and
separated by a broken line) and read from the buffer one at a time using PyTorch DataLoader

with a batch size of 1. Then, our learning algorithm (IWCM in this case) only has to call
the learn one method to update its parameters accordingly.

This approach suffers from efficiency problems due to the overhead of processing one
instance at a time. In addition, in the case of neural network-based models, such as ISG
and ICBOW, which are based on gradient descent, loss calculations can result in inaccu-
rate gradients [34], which can lead to requiring too many instances to obtain good word
representations.

Incremental batch learning, on the other hand, gathers a small batch of instances before
training. This allows neural network-based models to benefit from the increased efficiency of
specialized computing architectures such as GPUs, which replace vector-matrix operations
with matrix-matrix operations for forward and backward network passes. The difference with
traditional batch learning is that batches can only be processed once and must be deleted
once processed.

34

Listing 3.2: Example of learn many method using the Incremental WCM model. The pa-
rameters of the WordContextMatrix class are the vocab size, window size, and context size,
respectively.

from r i v e r t e x t . models import WordContextMatrix
from r i v e r t e x t . u t i l s import TweetStream

from torch . u t i l s . data import DataLoader

t s = TweetStream (”/path/ to / tweets . txt ”)
wcm = WordContextMatrix (

vo cab s i z e =100000 ,
window size=3,
c o n t e x t s i z e =1000

)
data loader = DataLoader (ts , b a t ch s i z e =32)

for batch in data loader :
wcm. learn many (batch)

As shown in Listing 3.2, our learning models only need to call the learn many method to
process and train a batch of instances. The text stream is also read in batches of w tweets
using PyTorch’s DataLoader with a batch size of w.

An appropriate batch of w usually depends on the available GPU memory capacity. It
is important to note that the word vectors will not be updated with this approach until the
batch has been processed.

3.3 Periodic Evaluation

The proposed method for evaluating our incremental WE performance is called Periodic
Evaluation. This method applies a series of evaluations to the entire model, using a test
dataset associated with intrinsic NLP tasks after a fixed number, p, of instances, have been
processed and trained. The algorithm takes as input the following arguments:

• The parameter p represents the number of instances between the evaluation series.

• The incremental WE model, referred to as M , is to be evaluated.

• The input text data stream, referred to as TS, used to train the incremental WE model.

• A test dataset, GR, associated with intrinsic NLP tasks.

The Periodic Evaluation algorithm aims to offer a structured evaluation scheme of an
incremental word embedding model throughout the training process. It provides a mechanism
for continuously assessing the model’s performance, thereby enabling the identification of any
potential issues and offering valuable insights into the model’s progress. However, it should
be noted that while traditional evaluation methods for NLP tasks have been applied in static

35

Algorithm 2: Periodic Evaluation Algorithm. The evaluator function takes the
words and their mapped vectors, and an intrinsic dataset.

Input: Stream ST, Incremental WE model, Intrinsic Dataset GR, int p
1 c = 0
2 while batch in ST do

// train the model

3 learn many(model, batch)
// evaluate the model during certain periods

4 if c ̸= 0 ∧ c mod p then
5 result = evaluator(model.wv, GR)

// the result is stored in a JSON file

6 save(result)

7 c += length(batch)

settings, the Periodic Evaluation represents a novel approach by extending their functionality
to the dynamic scenario of text streams, where the models can be trained indefinitely.

In Algorithm 2, we can observe how the periodic evaluation is implemented. In line 5,
there is a function referred to as “evaluator,” which takes as input the vocabulary structure,
the mapped vectors, and the test dataset associated with intrinsic NLP tasks and reduces the
quality of word embeddings formed into a scalar value. This function provides a quantitative
measure of the quality of the word embeddings generated by the incremental WE model,
allowing for a more accurate assessment of its performance.

The intrinsic tasks implemented in the proposed method are similarity, analogies, and
categorization. The following evaluation metrics measure these tasks:

• Similarity: The Spearman correlation coefficient [98], denoted as ρ, is used to calcu-
late the degree of association between the similarity scores calculated from the word
embeddings and the scores obtained from a human-annotated dataset.

• Analogies: Accuracy is used to count the number of correctly obtained words from
an analogy equation, comparing the set of analogy words obtained from the word
embeddings with the set of analogy words from the human-annotated dataset.

• Categorization: Purity clustering [59] is used to count the total number of correctly
classified words, comparing the categories obtained from the word embeddings with the
categories from the human-annotated dataset.

The results of the evaluation metrics are stored as a JSON file that the user can access
and examine at any time.

We have delegated the implementation of the evaluator for intrinsic tasks to an external
library called Word Embedding Benchmark [44]. This library provides a comprehensive col-
lection of test datasets (e.g., MEN [21], MTURK [80], AP [7]) and the corresponding methods
for measuring the quality of word embeddings. The intrinsic task in question determines the
specific evaluator function to be utilized. For instance, the similarity task requires using

36

the evaluate similarity function provided by the library. For further information on this
library’s functionality and usage, refer to the GitHub repository1.

It is important to note that the Periodic Evaluation method only assesses the quality of
word embeddings for words present in the model’s vocabulary at the evaluation time. As
the vocabulary is subject to changes due to the application of the Misra-Gries algorithm
for discarding infrequent words, the word embeddings for discarded words are not evaluated
unless they are subsequently reintroduced to the vocabulary.

Another important consideration is that in cases where some words in the test dataset
provided by the evaluator are not present in the model’s vocabulary, the average embedding
of the words in the vocabulary is assigned to these out-of-vocabulary words. This process
is used to evaluate the quality of the model. It is crucial to note that this approach can
impact the model’s overall performance, and the results obtained should be interpreted with
caution.

3.4 Implemented Methods

For this work, we adapted and modified three models: the Incremental Word Context Matrix
(IWCM), Incremental SkipGram with Negative Sampling (ISG) and Incremental Continuous
Bag of Words with Negative Sampling (ICBOW), whose details are explained next.

3.4.1 Incremental Word Context Matrix

Our implementation of the IWCM model is based on the algorithm described in the work of
Bravo-Marquez et al. [20]. The IWCM model utilizes a co-occurrence matrix of dimension
V x C, where V represents the number of words present in the vocabulary and C represents
the number of context words associated with each target word. It is essential to note that,
as opposed to its static counterpart, the co-occurrence matrix in the IWCM model may not
be square due to the incremental nature of the algorithm. The relationship between a target
word and its context is weighted by the Positive Pointwise Mutual Information (PPMI) score
[25], a commonly used measure of association in NLP.

PPMI(w, c) = max

(
0, log2

(
count(w, c) ×D

count(w) × count(c)

))
(3.1)

In Equation 3.1, the variable D represents the total number of words in the text streams.
The counters, count(wi, cj), count(wi), count(cj), and D, which are used to calculate the
probabilities of the word-context pairs for the PPMI score, are efficiently stored in VectorDict

objects provided by the River packages [67]. These objects function as a sparse data struc-
ture, enabling efficient mathematical operations and incremental updates of the word-context
matrix.

1https://github.com/kudkudak/word-embeddings-benchmarks

37

Algorithm 3: IWCM model method.

Input: Stream ST, window size W, vocab size V, context size C
Output: Matrix Mat V x C

1 d = 0
2 while batch in ST do
3 for tweet in batch do
4 tokens = tokenize(tweet)
5 for token in tokens do
6 if token not in vocab then
7 addToVocab(vocab, token)

8 d += 1
9 contexts = getContexts(token, tokens, W)

10 updateDictCounter(token, contexts)
11 for cont in contexts do

12 Mat(token, cont) = max
(

0, log
(

count(token,cont)·d
count(token)·count(cont)

))
// reduce the embedding dimension by incremental PCA

13 reduceEmbDimByIPCA(tokens)

In Algorithm 3, a sliding window of 2W tokens is utilized to extract context information
from the tokenized tweets in the text stream. The center of the window is aligned with a tar-
get word, and all surrounding tokens within the window are considered context tokens. For
unseen target words and contexts, new entries are dynamically allocated in the VectorDict

objects and initialized with a count value of zero. For existing words and contexts, the corre-
sponding counters are updated incrementally. This approach allows for efficient storage and
manipulation of the word-context matrix while maintaining an acceptable level of accuracy.

One limitation of this method is that, similar to its static counterpart, the IWCM model
produces sparse and high-dimensional vectors. To address this issue, we employ the incre-
mental Principal Component Analysis (PCA) [9] technique, to reduce the dimensionality of
the generated embeddings. This algorithm does not require multiple passes over the entire
set of embeddings to achieve dimensionality reduction, as it processes the data as a vector
stream. In addition, our IWCM implementation selectively applies dimensionality reduction
to recently added or updated embedding vectors to optimize computational efficiency.

3.4.2 Incremental Word2Vec

The incremental Word2Vec architecture comprises two ISG and ICBOW models based on
the static version proposed by Mikolov et al. [63]. The ISG model predicts the context words
for a given target word, and the ICBOW model aims to predict the target word using its
context words.

Our implementation is based on the Skip Gram model with Negative Sampling, as pro-
posed by Kaji and Kobayashi [46]. This implementation extends the traditional unigram

38

table, typically created as a static word array, to an incremental approach. Instead of per-
forming multiple passes over the entire dataset to complete the unigram table, the model
updates the table incrementally, making the process more efficient and scalable.

Algorithm 4: Adaptive Unigram Table.

Input: Array word indexes, Array T, int size T, Array Freqs, float α
Output: Array T

1 z = 0
2 for index in word indexes do
3 Freqs[index] += 1
4 F = Freqs[index] - (Freqs[index] - 1)α

5 z += F
6 if |T | < size T then
7 add F copies of index to T

8 else
9 for j = 1, ..., size T ·F

z
do

10 T[j] = index with probability F
z

In Algorithm 4, we present the adaptive unigram table proposed by Kaji and Kobayashi
[46]. Given a fixed-size unigram table T with a capacity of size T , an array Freqs repre-
senting the frequencies of the words in the vocabulary, a tuple of word indexes representing
a tweet, and a smoother parameter α. The algorithm proceeds as follows:

• If the number of elements in T , |T |, is less than size T , F copies of the word index
are added to T, where the word index corresponds to the indexes mapped to the words
that compose the vocabulary.

• Otherwise, the number of copies of the word index added to T is calculated as size T ·F
z

,
and the new additions to T may overwrite current values with a probability proportional
to F

z
. This process updates the distribution of words represented in T .

It is important to note that the frequency of each word is proportional to the number of
its indexes stored in T.

In Algorithm 5, the adaptive unigram method is implemented through the functions
updateTokenFreq and updateUnigramTable. The two incremental word2vec models utilize
this algorithm: ISG and ICBOW, with the only difference being the neural architecture used.
However, a crucial preprocessing step is necessary before performing the stochastic gradient
descent in line 14. This step involves converting the word indexes into the appropriate input
format for the specific ISG or ICBOW models and is essential for the proper functioning of
the algorithm.

The RiverText package incorporates the implementation of the neural network backend
for both the ISG and ICBOW models using the PyTorch framework.

39

Algorithm 5: Incremental Word2Vec method

Input: Stream ST, Vocab size V, Unigram Table Size T,int num ns
1 vocab = Vocab(V)
2 ut = UnigramTable(T)
3 while batch in ST do
4 for tweet in batch do
5 tokens = tokenize(tweet)
6 for w in tokens do
7 if w not in vocab then
8 addToVocab(vocab, w)

9 updateTokenFreq(w)
10 updateUnigramTable(w)
11 contexts = getContexts(w, tokens)
12 for c in contexts do
13 draw num ns indexes from ut: ns1, ns2, ..., nsnum ns

// convert the word indexes to the neural model input

14 vw, vc, ns1, ns2, ..., vnsnum ns = preprocessing(w, c, ns1, ns2, ...,
vnsnum ns)

// performs SGD to update the word embedding

15 SGD(vw, vc, vns1 , vns2 , ..., nsnum ns)

40

Chapter 4

Experiments and Results

In this section, we present our benchmark results divided into three subsections. In the first
part, we explain the dataset used in this work, the second part describes the experimental
setup and main hyperparameters, and the last part shows our main findings.

4.1 Data

Our experiment uses a dataset of unlabeled tweets to simulate a text stream of tweets. Twitter
provides an excellent source of text streams, given its widespread use and real-time updates
from its users. We draw a set of ten million tweets in English from the Edinburgh corpus
[78]. This dataset is a collection of tweets from different languages for academic purposes
and was downloaded from November 2009 to February 2010 using the Twitter API 1. We
hypothesize that using this dataset of tweets as a text stream would allow us to evaluate the
performance of incremental WE methods in a realistic scenario, given the nature of social
media text and its dynamic and evolving nature.

4.2 Experimental setup

In our experimental investigation, we executed the Periodic Evaluation using diverse datasets
and hyperparameter settings. Since there is not exists any methodology or benchmark dataset
in the literature that establishes how to measure the performance of the incremental WE, we
decided to focus on understanding how the models behave in front of different hyperparame-
ters settings in streaming environments as a starting point. The evaluation was conducted on
multiple architectural configurations (IWCM, ISG, and ICBOW) and intrinsic test datasets
[44].

The hyperparameters under consideration were the size of the embedding, the window
size, the context size, and the number of negative samples since they are the most com-

1https://developer.twitter.com/en/docs/twitter-api

41

mon hyperparameters among the three models proposed. The results of this evaluation
provide valuable insights into the performance of the different architectural configurations
and hyperparameter settings, offering a comprehensive understanding of the subject under
examination.

For the intrinsic test datasets, we used two datasets from the similarity tasks (MEN [21]
and Mturk [80]) and one from the categorization task (AP [7]).

4.2.1 Hyperparameter settings

The main hyperparameter configurations that we studied were:

1. We evaluated the impact of three hyperparameters on neural network embedding:

• Embedding size: refers to the dimensionality of the vector representation asso-
ciated with each vocabulary word. Our configurations considered three different
embedding sizes, including 100, 200, and 300.

• Window size: This refers to the number of neighboring tokens used as the con-
text for a target token. Our configurations utilized three different window sizes,
including 1, 2, and 3.

• The number of Negative samples: This refers to the number of negative instances
that maximize the probability of a word being in the context of a target word. Our
configurations considered three different numbers of negative samples, including
6, 8, and 10.

Therefore, our experimental investigation considered a total of 27 configurations, com-
prising all combinations of the hyperparameters (emb size ∈ 100, 200, 300, window size ∈
1, 2, 3, and num ns ∈ 6, 8, 10) and for each of the architectural configurations and in-
trinsic test datasets. Table 4.1 presents all the configurations for the incremental WE
models based on neural network architectures.

2. For the word context matrix embedding:

• We leveraged the same configurations of the embedding size and window size as
we did for the neural network embedding

• Context size: represents the number of words associated with a vocabulary word
based on the distributional hypothesis. The study involved three context sizes,
including 500, 750, and 1000.

Therefore, 27 configurations were executed, incorporating all the possible combinations
of (emb size ∈ 100, 200, 300, window size ∈ 1, 2, 3, and context size ∈ 500, 750, 1000)
for each intrinsic test dataset. Table 4.2 presents all the configurations for the incre-
mental WE models based on word context matrices.

It is important to mention that the vocabulary size in all configurations was set to
capture 1,000,000 words. Additionally, the period value, p, utilized in our experiments
was set to 320,000 instances, with a batch size of 32. This period value was selected

42

as it represents the point at which the evaluator was called after processing 320,000
tweets. These parameters were carefully selected to effectively analyze the performance
of the different incremental word embedding models.

Table 4.1: Hyperparameter configuration for the ISG and ICBOW models.

Embedding size Window size Num. Neg. Samples
100 1 6
100 1 8
100 1 10
100 2 6
100 2 8
100 2 10
100 3 6
100 3 8
100 3 10
200 1 6
200 1 8
200 1 10
200 2 6
200 2 8
200 2 10
200 3 6
200 3 8
200 3 10
300 1 6
300 1 8
300 1 10
300 2 6
300 2 8
300 2 10
300 3 6
300 3 8
300 3 10

4.2.2 Results and discussion

Our analysis thoroughly evaluated various configurations (243 in total), considering the com-
bination of three architectures, multiple hyperparameter values, and intrinsic evaluation
tasks. As an illustration, we present two examples of the executed configurations:

• A configuration comprised of the ICBOW model, with hyperparameters set to emb size =
300, window size = 3, and num ns = 10, was employed for the similarity evaluation
task using the MEN dataset.

43

Table 4.2: Hyperparameter configuration for IWCM model.

Embedding size Window size Context size
100 1 500
100 1 750
100 1 1000
100 2 500
100 2 750
100 2 1000
100 3 500
100 3 750
100 3 1000
200 1 500
200 1 750
200 1 1000
200 2 500
200 2 750
200 2 1000
200 3 500
200 3 750
200 3 1000
300 1 500
300 1 750
300 1 1000
300 2 500
300 2 750
300 2 1000
300 3 500
300 3 750
300 3 1000

• Another configuration involved the ISG model, with hyperparameters defined as emb size =
100, window size = 1, and num ns = 6, was utilized for the AP dataset’s categoriza-
tion evaluation task.

As mentioned in Section 3.3, the Periodic Evaluation is conducted as an intrinsic evalua-
tion task after processing p instances during the training loop of any incremental WE model.
Table 4.3 presents the results of applying the Periodic Evaluation to all hyperparameter
configurations listed in Table 4.1, using the ICBOW model and the MEN dataset based on
similarity tasks. Unfortunately, the complete table cannot be displayed in this document due
to its size, but it is available in the repository2 of our library.

Table 4.4 presents the results of the Periodic Evaluation, which are sorted in descending
order based on the mean Spearman correlation obtained during the training process. Upon

2https://github.com/dccuchile/rivertext/tree/main/experiments

44

analyzing the table, it can be observed that the best results are obtained for the larger
window and embedding sizes with the ICBOW model in the similarity task using the MEN
dataset. However, this table just gives an insight into the best hyperparameter setting for a
specific model, omitting a concise comparison of how the other models behave in front of the
different hyperparameter settings and evaluation tasks.

The tables containing the results of our experiments for the remaining models can be
found in the Section B of this document. However, due to their size, they may not be fully
visible on a single page. Therefore, we recommend referring to the documentation page for
a complete view of these tables.

Table 4.3: The table shows the results of the periodic evaluation of the ICBOW model and
the MEN dataset for the similarity task, measured with Spearman’s correlation. Although
the full table is too large for this paper, it can be accessed on the documentation page. The
bold remark represents the best result on average.

Model Emb. size Window size Num. N. S. Mean T1 ... T15 ... T31
ICBOW 300 3 6 0,5075 0,3546 ... 0,5236 ... 0,5194
ICBOW 300 3 8 0,507 0,3381 ... 0,5298 ... 0,5275
ICBOW 300 3 10 0,505 0,3366 ... 0,5291 ... 0,5327
ICBOW 100 3 8 0,4891 0,3499 ... 0,5233 ... 0,5013
ICBOW 200 3 10 0,4884 0,3433 ... 0,4971 ... 0,5112
ICBOW 100 3 6 0,4879 0,3128 ... 0,4985 ... 0,5108
ICBOW 200 3 8 0,4828 0,3562 ... 0,5041 ... 0,5081
ICBOW 100 3 10 0,4828 0,3288 ... 0,5058 ... 0,5168
ICBOW 300 2 6 0,4827 0,3312 ... 0,4988 ... 0,5242
ICBOW 200 3 6 0,4778 0,3359 ... 0,4892 ... 0,5097
ICBOW 300 2 8 0,4758 0,3474 ... 0,4967 ... 0,4895
ICBOW 300 2 10 0,4677 0,3446 ... 0,4762 ... 0,4854
ICBOW 200 2 6 0,4555 0,3067 ... 0,4865 ... 0,4969
ICBOW 100 2 8 0,4541 0,3102 ... 0,4979 ... 0,4613
ICBOW 200 2 10 0,4516 0,3264 ... 0,4597 ... 0,4784
ICBOW 200 2 8 0,4476 0,2761 ... 0,436 ... 0,4626
ICBOW 100 2 6 0,4475 0,3197 ... 0,4547 ... 0,4961
ICBOW 100 2 10 0,4402 0,3261 ... 0,4465 ... 0,4557
ICBOW 300 1 8 0,4226 0,2779 ... 0,438 ... 0,4406
ICBOW 300 1 6 0,4195 0,2763 ... 0,4465 ... 0,4501
ICBOW 300 1 10 0,4164 0,2947 ... 0,4276 ... 0,4422
ICBOW 200 1 6 0,4007 0,2796 ... 0,4076 ... 0,407
ICBOW 200 1 8 0,3942 0,3085 ... 0,4155 ... 0,3932
ICBOW 200 1 10 0,3836 0,2657 ... 0,3858 ... 0,425
ICBOW 100 1 6 0,3822 0,2717 ... 0,3594 ... 0,4178
ICBOW 100 1 8 0,3784 0,2671 ... 0,388 ... 0,4095
ICBOW 100 1 10 0,3721 0,2719 ... 0,3797 ... 0,3916

To determine the optimal hyperparameter configuration for each architecture and across
all tasks, we employed a ranking system based on the democratic voting procedure, Borda

45

Count [28]. The steps involved in this ranking system are as follows:

• First, the mean value of each hyperparameter configuration and test dataset is com-
puted based on the results obtained from the time series analysis.

• Secondly, for each evaluated test dataset, the average mean value is calculated across
all intrinsic tasks.

• Finally, we ordered the obtained average, with the lower position indicating the optimal
configuration.

By employing this ranking system, we aim to analyze the best hyperparameter config-
urations for each model and test dataset, considering that the intrinsic tasks’ results are
unrelated.

In Table 4.4, we illustrate each model’s top three ranked hyperparameter configurations.
The complete ranking, including all configurations, can be found on the documentation page3.
It is crucial to mention that while the example Table showcases the best three configurations
for each model, the full ranking encompasses a broader range of results.

Table 4.4: The Overall Ranking of the benchmark results are based on the average of the
Periodic Evaluation applied across the text stream. The result tasks are calculated by finding
the mean of the evaluation, and the overall mean is determined by taking the average of these
result tasks. This overall mean then determines the position in the ranking.

Hyperparameters Result tasks
Position Model Emb. size Win. size Num. N.S Context size Mean MEN Mean Mturk Mean AP Overall mean
1 ICBOW 100 3 6 - 0.488 0.439 0.294 0.407
2 ICBOW 300 3 8 - 0.507 0.428 0.284 0.406
3 ICBOW 300 3 6 - 0.508 0.416 0.289 0.404
4 ISG 100 1 8 - 0.44 0.4 0.321 0.387
5 ISG 100 1 6 - 0.443 0.393 0.312 0.383
6 ISG 100 2 10 - 0.421 0.399 0.309 0.376
7 IWCM 100 3 - 1000 0.44 0.343 0.319 0.367
8 IWCM 200 3 - 1000 0.438 0.351 0.307 0.366
9 IWCM 300 3 - 1000 0.439 0.35 0.307 0.365

As can be seen from the results, the neural network models ICBOW and ISG demon-
strate superior performance, on average, compared to the non-neural network IWCM model.
Notably, the ICBOW models attain better results with larger embedding and window sizes.
In contrast, the ISG models perform optimally with smaller embedding and window sizes.
In the case of the IWCM model, the effect of embedding and window sizes on performance
is unclear. However, a trend towards improved performance with larger context sizes is
observable.

Considering these findings in the context of the chosen evaluation metrics and the intrinsic
tasks involved is important. The results suggest that the neural network architecture of the
ICBOW and ISG models may significantly impact the performance, particularly concerning
capturing semantic relationships between words. Additionally, the varying optimal configu-
rations for the ICBOW and ISG models highlight the need for thorough experimentation and

3https://dccuchile.github.io/rivertext/benchmark/

46

Figure 4.1: Best setting models for MEN, Mturk, and AP datasets. The period p was set as
3,200,000 instances, which means the evaluator of the period evaluation was applied every
3,200,000 training instances.

analysis when selecting hyperparameters in these models. Further research may also consider
exploring the underlying mechanisms and reasons for the observed performance differences
between the models.

According to Table 4.4, we can state that the best hyperparameter setting for each model
are:

• Best setting configuration for ICBOW model is emb size = 100, window size = 3, and
num ns = 6.

• Best setting configuration for ISG model is emb size = 100, window size = 1, and
num ns = 8.

• Best setting configuration for IWCM model is emb size = 100, window size = 3, and
context size = 1000.

The results of the optimal hyperparameter configurations for each model are displayed

47

in Figure 4.1. This figure showcases the performance dynamics across different periods for
the MEN, Mturk, and AP datasets. The figure highlights the crucial role of hyperparameter
tuning in optimizing the performance of each model. The ICBOW model appears to perform
more in the similarity task than the categorization task. Conversely, the ISG and IWCM
models perform better in the categorization task and outperform the ICBOW model. How-
ever, it is noteworthy that the results of a model for a specific intrinsic evaluation task and
dataset can vary significantly and are not always related. Thus, a model may perform well
in one task but poorly in another.

The appendix contains the remaining graphs showing the relationship between hyperpa-
rameter settings in the three architectures and intrinsic NLP tasks.

48

Chapter 5

RiverText Library

The RiverText1 library is an open-source implementation of various incremental word embed-
ding techniques found in literature, adhering to the streaming learning paradigm. Developed
in Python, the library is seamlessly integrated with several popular data science libraries and
can be easily installed using pip2. The project is publicly hosted on Github3 under the BSD
3-Clause license and is structured according to the design and code patterns recommended
by the river4 community.

The library has extensive documentation, including tutorials, an API definition, and
a guide on contributing to the project, executing tests, and compiling documentation. The
RiverText library is a valuable resource for researchers and practitioners looking to implement
incremental word embeddings in their projects and contribute to advancing the field.

The RiverText library was developed with the following objectives in mind:

• Standardizing and encapsulating existing incremental word embedding algorithms and
designing new ones to advance the field.

• Proposing a preliminary evaluation scheme for incremental word embedding models
using intrinsic evaluation NLP tasks to measure their effectiveness and robustness.

• Providing an easily accessible toolkit for both the research community and industry to
access these models and facilitate their practical applications.

It also provides support for the following:

• Loading and iterating over files that cannot be stored on disk.

• Saving metric values in JSON files across the training phase of the models.

1https://dccuchile.github.io/rivertext/
2https://pypi.org/project/rivertext/
3https://github.com/dccuchile/rivertext
4https://riverml.xyz

49

• Implementing a vocabulary class that can be used for any incremental method.

The following section provides a detailed description of the library and its implementation.
We begin by discussing the motivation behind the development and publication of this library.
Next, we present the design of the main components and processes involved in incremental
word embedding techniques. Finally, we highlight some of the advanced processes of the
library, such as loading larger files, training a model with one or many instances, running
periodic evaluations, and saving the results.

5.1 Motivation

One of the key prerequisites for our benchmark analyses was implementing the incremental
WE algorithm used in previous studies. Therefore, we attempted to reuse all publicly avail-
able resources and recreate any missing ones. However, upon completing the development of
our framework, which uses the incremental learning types of instance and batch, it became
apparent that unifying the different implementations was not feasible. Instead, each code
and resource was developed to meet the specific requirements of individual studies, which
greatly restricted their reuse and extension.

Consequently, we decided to re-implement the incremental WE algorithms according to
our framework’s guidelines and software decisions. The high level of standardization provided
by RiverText enabled us to implement the algorithms and develop them into a well-designed
and highly extensible code that follows best practices in Python development.

Furthermore, the absence of standardized tools for streaming embeddings, the limita-
tions of our benchmark analyses, and the advanced level of development we were conducting
prompted us to publish our code as an open library accessible to members of the research
community and industry. Ensuring the code’s broader usage and facilitating the standard-
ization of incremental WE algorithms for future research.

5.2 Components

In this section, we will present the main components of our framework and discuss how the
algorithms were standardized, as described in Chapter 3.

5.2.1 Word Embedding Model

This section will explore the various classes and sub-packages responsible for implementing
incremental WE models in our library. As we have mentioned earlier, the primary objective
of these methods is to update WE in real-time as new data arrives rather than retraining
the entire model on the entire dataset every time new data is added. Our implementation

50

of incremental WE leverages the techniques proposed in the literature to update traditional
WE algorithms efficiently.

From a technical perspective, our choice to use the river library for our implementa-
tions was influenced by its expanding community and the prevalence of its use among users.
Although the river library predominantly emphasizes instance learning via the learn one

method, several essential classes provide a learn many method that facilitates incremental
batch learning. This approach holds great importance to us, as it allows us to implement
incremental word2vec models using PyTorch as a backend for the neural network layer. It
is worth noting that the PyTorch library is optimized for batch operations utilizing native
tensor objects for vector operations.

We organized the implementation into the following Python classes:

IWVBase class

The IWVBase class is foundational for implementing incremental WE methods in the River-
Text library. In addition, by extending the Transformer and VectorizeMixin classes from the
River library, the IWVBase class provides a powerful framework for processing and analyzing
text data.

The Transformer class is a key component of the river library and provides several
methods for learning from incoming data, including the learn one and learn many methods.
These methods allow the IWVBase class to update its word embeddings incrementally based on
new input data. Additionally, the Transformer class includes several data standard methods,
such as predict one and predict many, that enable the IWVBase class to make predictions
and classify text data.

The VectorizeMixin class contains several attributes and methods that facilitate text
data processing, such as tokenization and vectorization. These methods are crucial for gen-
erating word embeddings from text data and transforming them into a format that machine
learning models can use.

To facilitate the implementation of new incremental WE methods in the RiverText library,
it is recommended to extend the IWVBase class. By doing so, the new methods can inherit
the common attributes, methods, and characteristics of the IWVBase class, which can help to
reduce development time and increase code efficiency.

Extending the IWVBase class provides several benefits. First, it ensures that the new meth-
ods have access to the core functionalities of the IWVBase class, including the Transformer
and VectorizeMixin classes, which are essential for text data processing and machine learn-
ing. Second, it promotes code reuse and modularity, as the common features of the IWVBase

class can be easily shared among the different incremental WE methods. Furthermore, by
extending the IWVBase class, new methods can leverage existing code and incorporate new
features without disrupting the codebase.

51

Figure 5.1: The class diagram for IWVBase, representing a base incremental WE algorithm,
should include the attributes and methods specific to this class. As IWVBase extends the
Transformer and VectorizeMixin classes, it can inherit their respective methods for pro-
cessing textual data streams and for applying the incremental learning paradigm.

In diagram 5.1, we can see the attributes and methods of the IWVBase class, which extends
the Transformer and VectorizeMixin classes.

IWCM class

The IWordContextMatrix is a class designed for capturing the meaning of words based on
their contexts. It implements the Incremental Word Context model, which analyzes the
co-occurrence of words within a given corpus to comprehensively represent the relationships
between words.

To achieve this, the IWordContextMatrix class extends the IWVBase class and pro-
vides methods for instance and batch incremental learning, including the learn one and
learn many methods. The model also employs a streaming version of weighted correlations
between the target and its contexts to ensure accuracy in capturing the meaning of words
using PPMI values.

There are two options for obtaining resulting embeddings from the model: the first is to
use the word context matrix method to obtain sparse vectors, while the second is to reduce the
embedding using the Incremental PCA algorithm, the user can decide which option wants to
use configuration the reduce dim parameter of the class IWordContextMatrix. Both options
allow for flexibility and customization depending on the user’s needs.

Throughout the iteration process over the source of data streams, the model must store
the counter for computing the streaming PPMI values. These values are stored in the Vocab

object, and the model only updates vectors for words that have had their counts incremented.

52

Additionally, the vocabulary is updated to include new words appearing in the text streams,
and this update is performed using the Misra Gries algorithm, as mentioned before. Finally,
the word context matrix is stored in the sparse matrix object of the scipy library, providing
efficient and scalable processing of large volumes of data.

Figure 5.2: Attributes and methods for the IWordContextMatrix class that represents the
IWCM method.

Diagram 5.2 presents the IWordContexMatrix class and its associated attributes and
methods. This class is designed for generating word embeddings using the word-context
matrix approach, which involves computing the co-occurrence statistics of words and con-
structing a matrix that encodes the relationships between them.

One important feature of the IWordContexMatrix class is its dynamic vocabulary re-
duction capability. This is accomplished through the reduce vocab method, which frees
up space for new words when the vocabulary becomes full. This is particularly useful in
streaming environments with large vocabulary sizes and constantly changing. It allows the
model to adapt and continue learning without being constrained by a fixed vocabulary size.
Additionally, the IWordContexMatrix class includes the reduce emb2dict method, which
reduces the dimensionality of the generated word embeddings using the Incremental PCA

53

algorithm.

IWord2Vec class

The IWord2Vec class is a highly efficient implementation of the Incremental SkipGram and
Continuous Bag of Words (CBOW) models for generating word embeddings. It builds on
the IWVBase class, which serves as a base structure for the Word2Vec algorithm and any
incremental embedding method. Users can choose the desired model by setting the value of
the sg parameter to 1 for SkipGram or 0 for CBOW.

One of the key advantages of IWord2Vec is its use of the PyTorch deep learning framework
as its internal neural network backend. This allows for using PyTorch’s numerous benefits,
such as leveraging GPUs for faster training and selecting from a wide range of optimization
algorithms to enhance the model’s performance. The learn one and learn many methods
depend on a preprocessor object provided by the iword2vec utils model to transform the
input text into a format suitable for neural network training. After preprocessing, the inputs
are passed to the forward method of the respective embedding architecture. The selected
model determines the specific type of preprocessor used.

The IWord2Vec class has several important parameters, including the size of the vocab-
ulary, the size of the unigram table, the size of the embedding, the number of negative
samples to use during training, and the model to use. The size of the vocabulary and the size
of the unigram table can impact the quality of the word embeddings generated by the model.
Larger values of these parameters can lead to better performance, but they also increase the
computational cost of training. The size of the embedding controls the dimensionality of the
word vectors that the model generates. The number of negative samples is used during train-
ing to improve the quality of the word embeddings. It can significantly impact the model’s
performance, but too many negative samples can lead to overfitting.

54

Figure 5.3: Attributes and methods for the IWord2Vec class that represents the ISG and
ICBOW methods.

Diagram 5.3 displays the attributes and methods associated with the IWord2Vec class, a
neural network-based model for generating word embeddings. One notable difference between
Diagram 5.3 and Diagram 5.2, which also deals with word embeddings, is that the former
includes the iwordvec utils sub-package, which is responsible for processing the vocabulary
and inputs for the neural network.

55

iword2vec utils sub package

The iword2vec utils subpackage constitutes an integral component of the IWord2Vec im-
plementation. Its purpose is to provide a collection of classes that facilitate the incremental
update of the unigram table and offer preprocessing algorithms that transform textual data
into positive and negative samples suitable for training the model.

The unigram table is an important data structure utilized during negative sampling
in the word embedding training. It represents the frequency distribution of words within
the input corpus and is instrumental in sampling negative examples during training. The
iword2vec utils package includes a class, called UnigramTable, that efficiently updates the
unigram table during incremental training, with methods such as samples for randomly se-
lecting negative examples, build for constructing the unigram table structure, and update

for updating the table using the algorithm proposed by Kaji and Kobayashi. The first figure
of Diagram 5.4 illustrates the UnigramTable and its methods.

Besides the unigram table implementation, the iword2vec utils package provides sev-
eral preprocessing algorithms that convert textual data into positive and negative samples
suitable for feeding into the model during training. The specific preprocessing algorithm
depends on the selected embedding model, such as SkipGram or CBOW. For instance, one
preprocessing algorithm converts a sequence of words into a tuple comprising the target and
context words. In contrast, another converts a sequence of words into a tuple containing the
target word and a negative sample. Diagram 5.4 depicts the Preprocessor as the base class
for implementing the inputs preprocessing algorithm for textual streams. Given that the ISG
and ICBOW models differ in their input formats, the PrepSG and PrepCBOW classes extend
the Preprocessor and differ in the input format specified within the call method when
the preprocessor objects are instantiated.

Another significant set of classes provided by the iword2vec utils subpackage pertains to
the PyTorch backend, which facilitates the implementation of the neural network component
of the incremental neural models. Analogous to the preprocessing classes, the WordVec class
implements common functionality for the two methods, ISG and ICBOW. For the specific
vector calculations of the methods, the WordVec class is extended by the SG and CBOW classes,
differing in their forward method, which implements the loss function for each method. The
final figure in Diagram 5.4 illustrates the WordVec class and its child classes.

56

Figure 5.4: The iword2vec utils module includes three crucial classes for its functionality,
which are visualized in three separate diagrams. The first diagram displays the UnigramTable
class, which creates and maintains a table of unigram frequencies used in the ISG and ICBOW
models. Its primary methods include generating a table, sampling words from the table, and
updating it after a new word is processed. The second diagram shows the Preprocessor

class, responsible for converting the input stream of text into a neural network representation.
It uses techniques such as subsampling and negative sampling to prepare the input for the
neural network. Finally, the third diagram depicts the PyTorch implementation for the neural
network backend, which includes input and output embedding layers and hidden layers that
perform the neural network computations. The diagrams visually represent the classes and
their interactions within the iword2vec utils module.

57

5.2.2 Periodic Evaluation

The PeriodicEvaluator class assesses the performance of an incremental WE model using
an intrinsic NLP task and a related-test dataset after a set number of instances have been
processed and trained. The class takes as input the dataset to train on, the model to evaluate,
the number of instances to process before evaluating the model, a golden dataset containing
relations, an evaluation function, and a path to an output file to store the evaluation results.

In diagram 5.5, we depict the attributes and methods of the PeriodicEvaluation class.
The run method executes periodic assessments of the entire model every p instances, where
p is the number of instances to process before evaluating the model. The method first
processes a batch of data using the model’s learn many method. Then, suppose the number
of processed instances is divisible by p. In that case, the model’s embeddings are extracted
using the vocab2dict method, and the evaluator function is called to evaluate the model’s
performance on the test dataset. The result is appended to store results list, and if an
output file path is provided, it is saved in a JSON file.

Figure 5.5: Diagram of class that shows the attributes and methods for the
PeriodicEvaluation class that represent the Periodic Evaluation.

5.2.3 Utils

The utils package implements utility classes and functions for code execution. The main
classes are:

Vocabulary

The container class is a fundamental component in storing the words used as vocabulary
from a text stream. This vocabulary implementation is used across all incremental word
embedding algorithms. In other words, the container class acts as a central repository for all
the words processed by the incremental word embedding algorithms.

58

As the text stream grows and new words are encountered, the container class dynamically
updates the vocabulary to ensure it accurately represents the full range of words, such as the
Misra Greis algorithm.

The Vocab class is a critical container that stores the vocabulary utilized in incremental
word embedding algorithms. Its inner structure consists of two VectDict attributes. The first
attribute stores the words that make up the model’s vocabulary, while the second attribute
is responsible for keeping track of how many times a word in the vocabulary is seen in the
text stream.

Additionally, in Diagram 5.6, we present how the Vocab class features an add token

method that adds new tokens to the vocabulary by checking whether they are already con-
tained in the VectDict object. If the token is absent in the vocabulary, the add token

method adds the word and increments its count by one. However, the method updates the
word count if the token is already in the vocabulary.

Furthermore, when the vocabulary structure becomes full, the class has a remove method
that eliminates tokens. Finally, the Misra Greis algorithm is executed to make space for new
words in the vocabulary. With this algorithm, the class decrements the count of all words
by one and removes the ones with a count of one.

TweetStream Dataloader

The TweetStream class is an important feature in our implementation that allows for the
efficient loading of large text files. This class extends the IterableDataset class of the
PyTorch API, which integrates seamlessly with PyTorch’s data-loading utilities.

Using the TweetStream class enables us to overcome the memory constraints associated
with loading entire datasets into memory. Instead, the class reads and processes the text
stream iteratively, loading only one tweet at a time, making it possible to work with much
larger datasets that exceed our system’s memory capacity. However, it’s worth noting that
datasets must have a specific format, with one tweet per line separated by a break line.

Moreover, in Diagram 5.6 we shows how the TweetStream class provides a wide range of
helpful methods to preprocess the text stream before feeding it into our incremental learning
algorithms. For instance, we can use the class to filter out stop words or perform tokenization,
stemming, or lemmatization to enhance the quality of the training data.

The class includes two methods: the preprocess method, which formats the data ac-
cording to the user’s specifications, and the iter method, which loads the next line or
chunk of text. These methods can be customized to meet specific requirements and improve
the performance of text stream processing.

59

Figure 5.6: The utils package contains two important classes: TweetStream and Vocab.
The TweetStream class is responsible for loading and iterating through files that may not
be stored on disk, providing a convenient interface for processing large volumes of text data
stored in memory or streamed from an external source. The Vocab class stores the words
associated with the vocabulary for the incremental word embedding methods.

5.2.4 Training Process

In this section, we will discuss two of the most important processes implemented by the li-
brary: the training process and the periodic evaluation process discussed in previous sections.

Training model workflow

In a more technical context, the training process provided by RiverText involves a series of
steps that can be subdivided into inputs, actions, and outputs.

The input steps involve defining the main hyperparameters of the model, such as vocab size,
context size, and num ns, among others. Additionally, the user must instantiate the model
object and enable the source of text streams, for which it is necessary to define the iterable
object TweetStream. This object allows for the opening and iteration of files that may not
be stored on disk.

After defining the model and enabling the source of text streams, the next step is to
create a data loader object from the PyTorch API. This object is used to iterate over the
text the data streams provide. Once the data loader is ready, the chosen model can train and
update the vectors generated by the text streams. It is worth noting that these actions are
continuously executed, ensuring the embeddings are continually updated during training.

The resulting embedding vectors generated by the model and text streams serve as the

60

output of the training process. Importantly, these actions are continuously executed, allowing
the embeddings to be continuously updated throughout the training process.

Figure 5.7: Training scheme for the IWCM model.

Diagram 5.7 illustrates the training workflow for the IWCM model. The celestial squares
in the diagram represent the input steps, while the green squares indicate the subsequent
actions performed once the inputs are received. The yellow squares represent the embedding
outputs. Notably, the leftward arrow from the training model square to the data loader
indicates that the learning process occurs continuously while the vectors are being updated.

Figure 5.8: Training scheme for the incremental Word2Vec models.

Diagram 5.8 portrays the training process for the word2vec models. Within RiverText,
the IWord2Vec object encapsulates the ISG and ICBOW models and serves as an interface
for training dynamic word vectors from text streams. It is noteworthy that the choice of the
word2vec model for training the text streams is contingent on the value of the sg parameter,
with a value of 1 implying the utilization of the ISG model and the ICBOW model being
implemented otherwise.

At the core of the training process is the IWord2Vec object, which generates and updates

61

the word vectors based on the input text streams. The main hyperparameters, such as
vocab size, context size, and num ns must be defined to begin the training process, as they
underpin the model’s configuration. The model object is then instantiated, and the iterable
object TweetStream is employed to facilitate the input of text streams. The remaining steps
closely resemble those employed in the IWCM model, as we aim to develop a unified interface
for each incremental method.

Periodic Evaluation Execution

The Periodic Evaluation scheme is a useful tool for assessing the performance of incremental
word embedding models in streaming scenarios using intrinsic NLP tasks. It is implemented
in the evaluator package of the RiverText library.

The Periodic Evaluation scheme workflow involves several steps, which are illustrated in
Diagram 5.9:

1. The user selects the hyperparameters for the incremental word embedding model and
instantiates an object of that model.

2. The text streams are loaded into a TweetStream object for iteration.

3. The user selects a golden relation dataset related to an intrinsic NLP task.

4. To evaluate the model, the user instantiates a function related to the task chosen in
the third step.

5. The inputs from the previous steps are passed into a PeriodicEvaluation object.

The actions performed by the PeriodicEvaluation object consist of applying the eval-
uation function from step four to the inputs of every p observation using the run method,
enabling continuous evaluation of the model’s accuracy and identifying areas for improve-
ment.

The outputs from the Periodic Evaluation scheme consist of a JSON file that stores infor-
mation about the assessment of the model. This includes the model name, hyperparameters,
and the intrinsic NLP task metric results. This information can be used to monitor the
model’s performance over time and make improvements as necessary.

62

Figure 5.9: Workflow scheme for running the Periodic Evaluation using an incremental WE
model.

63

Chapter 6

Conclusion and Future Work

6.1 Conclusion

The landscape of human communication has rapidly changed with the advent of social me-
dia [23]. The increasing availability of real-time data streams poses significant challenges
to the traditional word embedding models that rely on large corpora of static data. The
ever-evolving nature of language in these dynamic environments makes it necessary to re-
train the models continuously. This requirement is computationally expensive, making the
development of incremental WE models an essential research area in NLP.

In this context, the RiverText framework significantly contributes to the field. River-
Text provides a systematic approach for training and evaluating IWE models from text
data streams. It enables the implementation of standardized models and provides a unified
methodology for comparing and evaluating them. Furthermore, it offers a robust evaluation
method based on intrinsic NLP tasks adapted to a streaming environment.

To assess the effectiveness of the framework, the authors conducted a benchmark study
that evaluated three incremental WE architectures: ICBOW, ISG [46, 61], and IWCM [20].
The benchmark study evaluated the models using periodic intrinsic evaluations of word sim-
ilarity and categorization tasks. The study revealed that hyperparameter tuning is essential
for the optimal performance of the models. For instance, larger embedding sizes improve
ICBOW’s performance, while ISG benefits from smaller embedding sizes.

One disadvantage of the periodic evaluation approach is that it cannot detect concept
drift [95], a common problem in streaming data. Concept drift refers to the changes in the
data distribution that may occur over time, which can significantly affect the performance of
the models. Although the proposed approach allows for visualizing the model’s performance
throughout the training process, it fails to capture the effect of concept drift on the models.
Unfortunately, no standard methodology or benchmark dataset can simulate concept drift in
IWE models. Therefore, we strongly recommend carefully applying these algorithms’ results
in streaming environments.

We have made RiverText available as an open-source library, which includes a compre-

64

hensive set of tutorials and API documentation. This makes it easy for researchers and
practitioners to use the framework and replicate the benchmark study. With RiverText, the
authors aim to promote reproducibility and further research in incremental WE models. The
framework’s standardization and evaluation methodology make it an important contribution
to the field and facilitate further research in this exciting area. The authors welcome contri-
butions from the community to enhance the library and improve the understanding of IWE
models.

6.2 Future Work

Our study focuses on streaming learning under the word embeddings [20, 46, 61, 76, 75]
algorithm and its evaluation. However, the field of study has advanced since we based our
framework, opening up opportunities for machine learning from data streams in various areas,
particularly in NLP.

Moving forward, we plan to expand our system’s capabilities for text representation and
evaluation in the context of the time-evolving text. Our primary goal is to incorporate more
incremental text representation methods, such as incremental Glove [76], to increase the
flexibility and adaptability of word and phrase representation as they evolve.

Additionally, we aim to develop an evaluation methodology that considers concept drift,
which pertains to the semantic changes of words over time [7]. As we point out, our current
periodic evaluation approach assumes that golden relations, such as word pair similarities
or categories, remain static during the stream, which is not an adequate assessment of the
word vectors’ ability to adapt to change. Therefore, we plan to extend the concept drift idea
developed in [20] to simulate the semantic change in synthetic tweets for all intrinsic tasks
of WE evaluation

We also intend to improve the functionality of our software by incorporating other sketch-
ing techniques outlined in previous studies, such as [37], which enable efficient updating of
the vocabulary with minimal memory usage. Additionally, we aim to integrate incremental
detection of collocations or phrases, as described in recent research such as [43]. This would
enhance the representation of multi-word expressions such as ”New Zealand” or ”New York”
in our vocabulary.

Another critical area we aim to focus on in our future work is implementing a data loader
that connects to the Twitter API and streams topic-specific tweets for training. This would
enable users to monitor social media and extract relevant information efficiently, expanding
the potential of our system and enabling it to analyze the most recent and pertinent data.

Finally, we hope our system will inspire further investigation in NLP and incremental
learning, particularly in the representation of words and documents in the context of the
time-evolving text. With the exponential growth of social media and the web, our system
has the potential to be a valuable tool for extracting insights and knowledge from vast
amounts of text data.

65

Bibliography

[1] Hervé Abdi and Lynne J Williams. Principal component analysis. Wiley interdisci-
plinary reviews: computational statistics, 2(4):433–459, 2010.

[2] RR Ade and PR Deshmukh. Methods for incremental learning: a survey. International
Journal of Data Mining & Knowledge Management Process, 3(4):119, 2013.

[3] Charu C Aggarwal. Data streams: models and algorithms, volume 31. Springer, 2007.

[4] Adnan Akhundov, Dietrich Trautmann, and Georg Groh. Sequence labeling: A prac-
tical approach. arXiv preprint arXiv:1808.03926, 2018.

[5] Anton Alekseev and Sergey Nikolenko. Word embeddings for user profiling in online
social networks. Computación y Sistemas, 21(2):203–226, 2017.

[6] Felipe Almeida and Geraldo Xexéo. Word embeddings: A survey. arXiv preprint
arXiv:1901.09069, 2019.

[7] Abdulrahman Almuhareb and Massimo Poesio. Concept learning and categorization
from the web. In proceedings of the annual meeting of the Cognitive Science society,
volume 27, 2005.

[8] Shun-ichi Amari. Backpropagation and stochastic gradient descent method. Neuro-
computing, 5(4-5):185–196, 1993.

[9] Matej Artac, Matjaz Jogan, and Ales Leonardis. Incremental pca for on-line visual
learning and recognition. In 2002 International Conference on Pattern Recognition,
volume 3, pages 781–784. IEEE, 2002.

[10] Wesam Barbakh and Colin Fyfe. Online clustering algorithms. International journal
of neural systems, 18(03):185–194, 2008.

[11] Horace B Barlow. Unsupervised learning. Neural computation, 1(3):295–311, 1989.

[12] George Bebis and Michael Georgiopoulos. Feed-forward neural networks. Ieee Poten-
tials, 13(4):27–31, 1994.

[13] Stefan Behnel, Robert Bradshaw, Craig Citro, Lisandro Dalcin, Dag Sverre Seljebotn,
and Kurt Smith. Cython: The best of both worlds. Computing in Science & Engineer-
ing, 13(2):31–39, 2010.

[14] Albert Bifet and Eibe Frank. Sentiment knowledge discovery in twitter streaming data.
In International conference on discovery science, pages 1–15. Springer, 2010.

66

[15] Albert Bifet, Geoff Holmes, Bernhard Pfahringer, Philipp Kranen, Hardy Kremer,
Timm Jansen, and Thomas Seidl. Moa: Massive online analysis, a framework for
stream classification and clustering. In Proceedings of the first workshop on applications
of pattern analysis, pages 44–50. PMLR, 2010.

[16] Albert Bifet, Geoffrey Holmes, and Bernhard Pfahringer. Moa-tweetreader: real-time
analysis in twitter streaming data. In International conference on discovery science,
pages 46–60. Springer, 2011.

[17] Albert Bifet, Ricard Gavalda, Geoffrey Holmes, and Bernhard Pfahringer. Machine
learning for data streams: with practical examples in MOA. MIT press, 2018.

[18] Piotr Bojanowski, Edouard Grave, Armand Joulin, and Tomas Mikolov. Enriching word
vectors with subword information. Transactions of the association for computational
linguistics, 5:135–146, 2017.

[19] Mohamed Reda Bouadjenek, Hakim Hacid, and Mokrane Bouzeghoub. Social networks
and information retrieval, how are they converging? a survey, a taxonomy and an
analysis of social information retrieval approaches and platforms. Information Systems,
56:1–18, 2016.

[20] Felipe Bravo-Marquez, Arun Khanchandani, and Bernhard Pfahringer. Incremental
word vectors for time-evolving sentiment lexicon induction. Cognitive Computation, 14
(1):425–441, 2022.

[21] Elia Bruni, Nam-Khanh Tran, and Marco Baroni. Multimodal distributional semantics.
Journal of artificial intelligence research, 49:1–47, 2014.

[22] Scott H Clearwater, Tze-Pin Cheng, Haym Hirsh, and Bruce G Buchanan. Incremental
batch learning. In Proceedings of the sixth international workshop on Machine learning,
pages 366–370. Elsevier, 1989.

[23] Evandro Cunha, Gabriel Magno, Giovanni Comarela, Virgilio Almeida, Marcos André
Gonçalves, and Fabricio Benevenuto. Analyzing the dynamic evolution of hashtags on
twitter: a language-based approach. In Proceedings of the workshop on language in
social media (LSM 2011), pages 58–65, 2011.

[24] Pádraig Cunningham, Matthieu Cord, and Sarah Jane Delany. Supervised learning.
Machine learning techniques for multimedia: case studies on organization and retrieval,
pages 21–49, 2008.

[25] Jurafsky Daniel, Martin James H, et al. Speech and language processing: An introduc-
tion to natural language processing, computational linguistics, and speech recognition.
prentice hall, 2007.

[26] Rahul Dey and Fathi M Salem. Gate-variants of gated recurrent unit (gru) neural
networks. In 2017 IEEE 60th international midwest symposium on circuits and systems
(MWSCAS), pages 1597–1600. IEEE, 2017.

[27] Sean R Eddy. Hidden markov models. Current opinion in structural biology, 6(3):
361–365, 1996.

67

[28] Peter Emerson. The original borda count and partial voting. Social Choice and Welfare,
40(2):353–358, 2013.

[29] Atefeh Farzindar and Diana Inkpen. Natural language processing for social media.
Synthesis Lectures on Human Language Technologies, 8(2):1–166, 2015.

[30] Bin Gao, Jiang Bian, and Tie-Yan Liu. Wordrep: A benchmark for research on learning
word representations. arXiv preprint arXiv:1407.1640, 2014.

[31] Xin Geng and Kate Smith-Miles. Incremental learning., 2009.

[32] Sahar Ghannay, Benoit Favre, Yannick Esteve, and Nathalie Camelin. Word embedding
evaluation and combination. In Proceedings of the Tenth International Conference on
Language Resources and Evaluation (LREC’16), pages 300–305, 2016.

[33] Anna Gladkova and Aleksandr Drozd. Intrinsic evaluations of word embeddings: What
can we do better? In Proceedings of the 1st Workshop on Evaluating Vector-Space
Representations for NLP, pages 36–42, 2016.

[34] Yoav Goldberg. Neural network methods for natural language processing. Synthesis
lectures on human language technologies, 10(1):1–309, 2017.

[35] Yoav Goldberg and Omer Levy. word2vec explained: deriving mikolov et al.’s negative-
sampling word-embedding method. arXiv preprint arXiv:1402.3722, 2014.

[36] Heitor Murilo Gomes, Jesse Read, Albert Bifet, Jean Paul Barddal, and João Gama.
Machine learning for streaming data: state of the art, challenges, and opportunities.
ACM SIGKDD Explorations Newsletter, 21(2):6–22, 2019.

[37] Amit Goyal, Jagadeesh Jagarlamudi, Hal Daumé III, and Suresh Venkatasubramanian.
Sketching techniques for large scale nlp. In Proceedings of the NAACL HLT 2010 Sixth
Web as Corpus Workshop, pages 17–25, 2010.

[38] Alex Graves and Alex Graves. Long short-term memory. Supervised sequence labelling
with recurrent neural networks, pages 37–45, 2012.

[39] Max Halford, Geoffrey Bolmier, Raphael Sourty, Robin Vaysse, and Adil Zouitine.
creme, a python library for online machine learning, 2019.

[40] Nathan Halko, Per-Gunnar Martinsson, and Joel A Tropp. Finding structure with
randomness: Probabilistic algorithms for constructing approximate matrix decomposi-
tions. SIAM review, 53(2):217–288, 2011.

[41] Zellig S Harris. Distributional structure. Word, 10(2-3):146–162, 1954.

[42] Frederick Hayes-Roth. Rule-based systems. Communications of the ACM, 28(9):921–
932, 1985.

[43] Sam Henry, Clint Cuffy, and Bridget T McInnes. Vector representations of multi-word
terms for semantic relatedness. Journal of biomedical informatics, 77:111–119, 2018.

68

[44] Stanis law Jastrzebski, Damian Leśniak, and Wojciech Marian Czarnecki. How to eval-
uate word embeddings? on importance of data efficiency and simple supervised tasks.
arXiv preprint arXiv:1702.02170, 2017.

[45] Michael I Jordan and Tom M Mitchell. Machine learning: Trends, perspectives, and
prospects. Science, 349(6245):255–260, 2015.

[46] Nobuhiro Kaji and Hayato Kobayashi. Incremental skip-gram model with negative
sampling. arXiv preprint arXiv:1704.03956, 2017.

[47] Jack Kiefer and Jacob Wolfowitz. Stochastic estimation of the maximum of a regression
function. The Annals of Mathematical Statistics, pages 462–466, 1952.

[48] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization.
arXiv preprint arXiv:1412.6980, 2014.

[49] Svetlana Kiritchenko, Xiaodan Zhu, and Saif M Mohammad. Sentiment analysis of
short informal texts. Journal of Artificial Intelligence Research, 50:723–762, 2014.

[50] Joost N Kok, Egbert J Boers, Walter A Kosters, Peter Van der Putten, and Mannes
Poel. Artificial intelligence: definition, trends, techniques, and cases. Artificial intelli-
gence, 1:270–299, 2009.

[51] Kamran Kowsari, Kiana Jafari Meimandi, Mojtaba Heidarysafa, Sanjana Mendu,
Laura Barnes, and Donald Brown. Text classification algorithms: A survey. Infor-
mation, 10(4):150, 2019.

[52] Anders Krogh. What are artificial neural networks? Nature biotechnology, 26(2):
195–197, 2008.

[53] Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. Deep learning. nature, 521(7553):
436–444, 2015.

[54] John A Lee and Michel Verleysen. Unsupervised dimensionality reduction: Overview
and recent advances. In The 2010 International Joint Conference on Neural Networks
(IJCNN), pages 1–8. IEEE, 2010.

[55] Omer Levy and Yoav Goldberg. Neural word embedding as implicit matrix factoriza-
tion. Advances in neural information processing systems, 27, 2014.

[56] Li Li, Miloš Doroslovački, and Murray H Loew. Approximating the gradient of cross-
entropy loss function. IEEE Access, 8:111626–111635, 2020.

[57] Rushi Longadge and Snehalata Dongre. Class imbalance problem in data mining review.
arXiv preprint arXiv:1305.1707, 2013.

[58] Agnes Lydia and Sagayaraj Francis. Adagrad—an optimizer for stochastic gradient
descent. Int. J. Inf. Comput. Sci, 6(5):566–568, 2019.

[59] Christopher D Manning. Introduction to information retrieval. Syngress Publishing,,
2008.

69

[60] James H Martin. Speech and language processing: An introduction to natural language
processing, computational linguistics, and speech recognition. Pearson/Prentice Hall,
2009.

[61] Chandler May, Kevin Duh, Benjamin Van Durme, and Ashwin Lall. Streaming word
embeddings with the space-saving algorithm. arXiv preprint arXiv:1704.07463, 2017.

[62] Ahmed Metwally, Divyakant Agrawal, and Amr El Abbadi. Efficient computation of
frequent and top-k elements in data streams. In International conference on database
theory, pages 398–412. Springer, 2005.

[63] Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Corrado, and Jeff Dean. Distributed
representations of words and phrases and their compositionality. Advances in neural
information processing systems, 26, 2013.

[64] Bonan Min, Hayley Ross, Elior Sulem, Amir Pouran Ben Veyseh, Thien Huu Nguyen,
Oscar Sainz, Eneko Agirre, Ilana Heinz, and Dan Roth. Recent advances in natural
language processing via large pre-trained language models: A survey. arXiv preprint
arXiv:2111.01243, 2021.

[65] Jayadev Misra and David Gries. Finding repeated elements. Science of computer
programming, 2(2):143–152, 1982.

[66] Jacob Montiel, Jesse Read, Albert Bifet, and Talel Abdessalem. Scikit-multiflow: A
multi-output streaming framework. The Journal of Machine Learning Research, 19(1):
2915–2914, 2018.

[67] Jacob Montiel, Max Halford, Saulo Martiello Mastelini, Geoffrey Bolmier, Raphael
Sourty, Robin Vaysse, Adil Zouitine, Heitor Murilo Gomes, Jesse Read, Talel Ab-
dessalem, et al. River: machine learning for streaming data in python. 2021.

[68] Frederic Morin and Yoshua Bengio. Hierarchical probabilistic neural network language
model. In International workshop on artificial intelligence and statistics, pages 246–252.
PMLR, 2005.

[69] Shanmugavelayutham Muthukrishnan et al. Data streams: Algorithms and applica-
tions. Foundations and Trends® in Theoretical Computer Science, 1(2):117–236, 2005.

[70] Makbule Gulcin Ozsoy. From word embeddings to item recommendation. arXiv preprint
arXiv:1601.01356, 2016.

[71] Odysseas Papapetrou, Minos Garofalakis, and Antonios Deligiannakis. Sketching dis-
tributed sliding-window data streams. The VLDB Journal, 24:345–368, 2015.

[72] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory
Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, et al. Py-
torch: An imperative style, high-performance deep learning library. Advances in neural
information processing systems, 32, 2019.

[73] WM Patefield. On the maximized likelihood function. Sankhyā: The Indian Journal
of Statistics, Series B, pages 92–96, 1977.

70

[74] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel,
P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau,
M. Brucher, M. Perrot, and E. Duchesnay. Scikit-learn: Machine learning in Python.
Journal of Machine Learning Research, 12:2825–2830, 2011.

[75] Hao Peng, Jianxin Li, Yangqiu Song, and Yaopeng Liu. Incrementally learning the
hierarchical softmax function for neural language models. In Proceedings of the AAAI
Conference on Artificial Intelligence, volume 31, 2017.

[76] Hao Peng, Mengjiao Bao, Jianxin Li, Md Zakirul Alam Bhuiyan, Yaopeng Liu, Yu He,
and Erica Yang. Incremental term representation learning for social network analysis.
Future Generation Computer Systems, 86:1503–1512, 2018.

[77] Jeffrey Pennington, Richard Socher, and Christopher D Manning. Glove: Global vec-
tors for word representation. In Proceedings of the 2014 conference on empirical methods
in natural language processing (EMNLP), pages 1532–1543, 2014.

[78] Saša Petrović, Miles Osborne, and Victor Lavrenko. The edinburgh twitter corpus. In
Proceedings of the NAACL HLT 2010 workshop on computational linguistics in a world
of social media, pages 25–26, 2010.

[79] Heny Pratiwi, Agus Perdana Windarto, S Susliansyah, Ririn Restu Aria, Susi
Susilowati, Luci Kanti Rahayu, Yuni Fitriani, Agustiena Merdekawati, and In-
dra Riyana Rahadjeng. Sigmoid activation function in selecting the best model of
artificial neural networks. In Journal of Physics: Conference Series, volume 1471, page
012010. IOP Publishing, 2020.

[80] Kira Radinsky, Eugene Agichtein, Evgeniy Gabrilovich, and Shaul Markovitch. A word
at a time: computing word relatedness using temporal semantic analysis. In Proceedings
of the 20th international conference on World wide web, pages 337–346, 2011.

[81] Jesse Read, Albert Bifet, Bernhard Pfahringer, and Geoff Holmes. Batch-incremental
vs. instance-incremental learning in dynamic and evolving data.

[82] Xin Rong. word2vec parameter learning explained. arXiv preprint arXiv:1411.2738,
2014.

[83] D Ross, J Lim, RS Lin, and MH Yang. Incremental learning for robust visual tracking.
internat. j. Computer Vision, 25(8):1034–1040, 2008.

[84] Sam T Roweis and Lawrence K Saul. Nonlinear dimensionality reduction by locally
linear embedding. science, 290(5500):2323–2326, 2000.

[85] Johannes Schmidt-Hieber. Nonparametric regression using deep neural networks with
relu activation function. 2020.

[86] Tobias Schnabel, Igor Labutov, David Mimno, and Thorsten Joachims. Evaluation
methods for unsupervised word embeddings. In Proceedings of the 2015 conference on
empirical methods in natural language processing, pages 298–307, 2015.

[87] Shai Shalev-Shwartz and Shai Ben-David. Understanding machine learning: From
theory to algorithms. Cambridge university press, 2014.

71

[88] Sagar Sharma, Simone Sharma, and Anidhya Athaiya. Activation functions in neural
networks. Towards Data Sci, 6(12):310–316, 2017.

[89] Ian Stewart, Dustin Arendt, Eric Bell, and Svitlana Volkova. Measuring, predicting
and visualizing short-term change in word representation and usage in vkontakte social
network. In Eleventh international AAAI conference on web and social media, 2017.

[90] Charles Sutton, Andrew McCallum, et al. An introduction to conditional random fields.
Foundations and Trends® in Machine Learning, 4(4):267–373, 2012.

[91] Peter D Turney and Patrick Pantel. From frequency to meaning: Vector space models
of semantics. Journal of artificial intelligence research, 37:141–188, 2010.

[92] Pauli Virtanen, Ralf Gommers, Evgeni Burovski, Travis E Oliphant, David Courna-
peau, Warren Weckesser, Pearu Peterson, Stefan van der Walt, Josh Wilson, Nikolay
Mayorov, et al. Scipy/scipy: Scipy 1.1. 0. Zenodo, 2018.

[93] Jialei Wang, Peilin Zhao, Steven CH Hoi, and Rong Jin. Online feature selection and
its applications. IEEE Transactions on knowledge and data engineering, 26(3):698–710,
2013.

[94] Qi Wang, Yue Ma, Kun Zhao, and Yingjie Tian. A comprehensive survey of loss
functions in machine learning. Annals of Data Science, pages 1–26, 2020.

[95] Geoffrey I Webb, Roy Hyde, Hong Cao, Hai Long Nguyen, and Francois Petitjean.
Characterizing concept drift. Data Mining and Knowledge Discovery, 30(4):964–994,
2016.

[96] Andreas Weiler, Michael Grossniklaus, and Marc H Scholl. Situation monitoring of
urban areas using social media data streams. Information Systems, 57:129–141, 2016.

[97] Marco A Wiering and Martijn Van Otterlo. Reinforcement learning. Adaptation,
learning, and optimization, 12(3):729, 2012.

[98] Clark Wissler. The spearman correlation formula. Science, 22(558):309–311, 1905.

[99] Siddharth Yadav and Tanmoy Chakraborty. Unsupervised sentiment analysis for code-
mixed data. arXiv preprint arXiv:2001.11384, 2020.

[100] Michael Zhai, Johnny Tan, and Jinho Choi. Intrinsic and extrinsic evaluations of
word embeddings. In Proceedings of the AAAI Conference on Artificial Intelligence,
volume 30, 2016.

[101] Bin Zhou, Yi Han, Jian Pei, Bin Jiang, Yufei Tao, and Yan Jia. Continuous privacy
preserving publishing of data streams. In Proceedings of the 12th International Con-
ference on Extending Database Technology: Advances in Database Technology, pages
648–659, 2009.

[102] Zhi-Hua Zhou. Machine learning. Springer Nature, 2021.

72

Annex A

Experiment Results by Task and
Model

In this section, we present the results of our experiments with the RiverText framework,
which involved varying the architectures, hyperparameter configurations, and intrinsic NLP
tasks. However, due to the tables’ size, we only present summary tables in this paper.
The full tables can be found on our GitHub repository at https://github.com/dccuchile/
rivertext/tree/main/experiments.

73

https://github.com/dccuchile/rivertext/tree/main/experiments
https://github.com/dccuchile/rivertext/tree/main/experiments

Table A.1: The table shows the results of the periodic evaluation of the ICBOW model and
the Mturk dataset for the similarity task, measured with Spearman’s correlation. Although
the full table is too large for this paper, it can be accessed on the documentation page
at https://dccuchile.github.io/rivertext/. The bold remark represents the best result on
average.

Model Emb. size Window size Num. N. S. Mean T1 ... T15 ... T31
ICBOW 300 3 10 0.4185 0.2705 ... 0.4099 ... 0.4583
ICBOW 300 3 8 0.4276 0.2758 ... 0.3805 ... 0.4484
ICBOW 300 3 6 0.4163 0.2386 ... 0.4278 ... 0.4711
ICBOW 300 2 10 0.4144 0.1621 ... 0.4052 ... 0.3672
ICBOW 300 2 8 0.4141 0.231 ... 0.3971 ... 0.4898
ICBOW 300 2 6 0.423 0.1731 ... 0.4164 ... 0.3876
ICBOW 300 1 10 0.3976 0.2604 ... 0.3978 ... 0.4382
ICBOW 300 1 8 0.37 0.1825 ... 0.3449 ... 0.4416
ICBOW 300 1 6 0.404 0.2788 ... 0.3621 ... 0.4516
ICBOW 200 3 10 0.4226 0.2222 ... 0.4257 ... 0.3856
ICBOW 200 3 8 0.4108 0.2027 ... 0.3932 ... 0.466
ICBOW 200 3 6 0.414 0.2353 ... 0.4686 ... 0.4233
ICBOW 200 2 10 0.3953 0.257 ... 0.4008 ... 0.3962
ICBOW 200 2 8 0.4123 0.2143 ... 0.3317 ... 0.4428
ICBOW 200 2 6 0.3925 0.2597 ... 0.3579 ... 0.3832
ICBOW 200 1 10 0.3573 0.1651 ... 0.3731 ... 0.376
ICBOW 200 1 8 0.3787 0.2696 ... 0.3557 ... 0.3598
ICBOW 200 1 6 0.3442 0.2141 ... 0.3197 ... 0.3639
ICBOW 100 3 10 0.419 0.2185 ... 0.4334 ... 0.4806
ICBOW 100 3 8 0.3888 0.1693 ... 0.4502 ... 0.4675
ICBOW 100 3 6 0.4394 0.1941 ... 0.4224 ... 0.5122
ICBOW 100 2 10 0.3883 0.1683 ... 0.3832 ... 0.4959
ICBOW 100 2 8 0.3869 0.2379 ... 0.4358 ... 0.4332
ICBOW 100 2 6 0.4067 0.1926 ... 0.4104 ... 0.4451
ICBOW 100 1 10 0.3574 0.1841 ... 0.4272 ... 0.3393
ICBOW 100 1 8 0.3501 0.2177 ... 0.3319 ... 0.3309
ICBOW 100 1 6 0.3683 0.1909 ... 0.3478 ... 0.409

74

Table A.2: The table shows the results of the periodic evaluation of the ICBOW model
and the AP dataset for the categorization task, measured with purity clustering. Although
the full table is too large for this paper, it can be accessed on the documentation page
at https://dccuchile.github.io/rivertext/. The bold remark represents the best result on
average.

Model Emb. size Window size Num. N. S. Mean T1 ... T15 ... T31
ICBOW 100 3 10 0.3024 0.2065 ... 0.301 ... 0.3383
ICBOW 100 3 8 0.2976 0.204 ... 0.3109 ... 0.3333
ICBOW 100 3 6 0.2942 0.2114 ... 0.2935 ... 0.3358
ICBOW 100 2 8 0.2922 0.2065 ... 0.306 ... 0.3109
ICBOW 200 3 8 0.291 0.2164 ... 0.2711 ... 0.3159
ICBOW 300 2 6 0.2902 0.1915 ... 0.2861 ... 0.306
ICBOW 300 3 6 0.289 0.204 ... 0.2861 ... 0.3159
ICBOW 300 2 10 0.2859 0.204 ... 0.2861 ... 306
ICBOW 300 3 8 0.2845 0.199 ... 0.2985 ... 0.3259
ICBOW 300 3 10 0.2843 0.194 ... 0.2935 ... 0.2985
ICBOW 100 2 10 0.2842 0.204 ... 0.2836 ... 0.3284
ICBOW 200 3 6 0.2838 0.1965 ... 0.2811 ... 0.3209
ICBOW 100 2 6 0.2836 0.2164 ... 0.2612 ... 0.306
ICBOW 200 3 10 0.2825 0.1891 ... 0.2861 ... 0.3358
ICBOW 300 2 8 0.2819 0.1915 ... 0.2811 ... 0.3234
ICBOW 200 2 6 0.2777 0.2189 ... 0.2836 ... 0.2985
ICBOW 300 1 6 0.2768 0.2015 ... 0.2786 ... 0.3383
ICBOW 200 2 8 0.2767 0.1866 ... 0.2836 ... 0.2736
ICBOW 300 1 8 0.2764 0.204 ... 0.2736 ... 0.3259
ICBOW 200 2 10 0.2732 0.194 ... 0.2711 ... 0.3134
ICBOW 300 1 10 0.2685 0.209 ... 0.291 ... 0.2786
ICBOW 200 1 6 0.2651 0.2139 ... 0.2537 ... 0.2886
ICBOW 200 1 8 0.2642 0.2065 ... 0.2761 ... 0.2811
ICBOW 100 1 10 0.2608 0.2065 ... 0.2612 ... 0.291
ICBOW 200 1 10 0.2607 0.209 ... 0.2761 ... 0.2612
ICBOW 100 1 6 0.2577 0.2065 ... 0.2637 ... 0.2637
ICBOW 100 1 8 0.2567 0.2264 ... 0.2736 ... 0.2761

75

Table A.3: The table shows the results of the periodic evaluation of the ISG model and
the MEN dataset for the similarity task, measured with Spearman’s correlation. Although
the full table is too large for this paper, it can be accessed on the documentation page at
https://dccuchile.github.io/rivertext/. The bold remark represents the best result on average

Model Emb. size Window size Num. N. S. Mean T1 ... T15 ... T31
ISG 300 3 10 0.3646 0.2975 ... 0.3771 ... 0.3796
ISG 300 3 8 354 0.3008 ... 0.364 ... 0.3534
ISG 300 3 6 0.3681 0.2843 ... 0.4094 ... 0.3927
ISG 300 2 10 0.3809 0.3111 ... 0.3764 ... 0.3825
ISG 300 2 8 0.3821 0.3048 ... 0.3846 ... 0.3963
ISG 300 2 6 0.3792 0.275 ... 0.3823 ... 0.3886
ISG 300 1 10 0.3947 0.3009 ... 0.3954 ... 0.3946
ISG 300 1 8 0.3982 0.3018 ... 0.4131 ... 0.4158
ISG 300 1 6 0.4073 0.3137 ... 0.4048 ... 0.4281
ISG 200 3 10 0.3828 0.2991 ... 0.4018 ... 0.3954
ISG 200 3 8 0.3721 0.3176 ... 0.3574 ... 0.371
ISG 200 3 6 0.3851 0.3194 ... 0.3906 ... 0.3903
ISG 200 2 10 0.3954 0.3133 ... 0.4009 ... 0.4118
ISG 200 2 8 0.3982 0.3312 ... 0.4107 ... 0.4092
ISG 200 2 6 0.3974 0.3169 ... 0.3999 ... 0.4165
ISG 200 1 10 0.41 0.3019 ... 0.408 ... 0.4241
ISG 200 1 8 0.408 0.3022 ... 0.4201 ... 0.4347
ISG 200 1 6 0.4133 0.2893 ... 0.4071 ... 0.4406
ISG 100 3 10 0.392 0.3069 ... 0.3858 ... 0.3974
ISG 100 3 8 0.4121 0.3128 ... 0.4227 ... 0.4432
ISG 100 3 6 0.4055 0.3248 ... 0.4174 ... 0.4182
ISG 100 2 10 0.421 0.3207 ... 0.4339 ... 0.4355
ISG 100 2 8 0.4227 0.3315 ... 0.4102 ... 0.4383
ISG 100 2 6 0.4267 0.3411 ... 0.4377 ... 0.4462
ISG 100 1 10 0.4418 0.3368 ... 0.4635 ... 0.4697
ISG 100 1 8 0.4396 0.3299 ... 0.4421 ... 0.4714
ISG 100 1 6 0.4427 0.3178 ... 0.4543 ... 0.4759

76

Table A.4: The table shows the results of the periodic evaluation of the ISG model and
the Mturk dataset for the similarity task, measured with Spearman’s correlation. Although
the full table is too large for this paper, it can be accessed on the documentation page
at https://dccuchile.github.io/rivertext/. The bold remark represents the best result on
average.

Model Emb. size Window size Num. N. S. Mean T1 ... T15 ... T31
ISG 300 3 10 0.317 0.2161 ... 0.2819 ... 0.3279
ISG 300 3 8 0.3117 0.1782 ... 0.2709 ... 0.2704
ISG 300 3 6 0.3406 0.1838 ... 0.3452 ... 0.2674
ISG 300 2 10 0.3372 0.221 ... 0.4176 ... 0.3231
ISG 300 2 8 0.3452 0.1428 ... 0.3973 ... 0.3189
ISG 300 2 6 0.3353 0.2175 ... 0.3276 ... 0.3201
ISG 300 1 10 0.3809 0.2527 ... 0.3859 ... 0.317
ISG 300 1 8 0.3694 0.1444 ... 0.3511 ... 0.3729
ISG 300 1 6 0.364 0.2389 ... 0.3603 ... 0.3993
ISG 200 3 10 0.3452 0.2448 ... 0.327 ... 0.2905
ISG 200 3 8 0.3555 0.277 ... 0.3232 ... 0.326
ISG 200 3 6 0.3399 0.2248 ... 0.387 ... 0.2831
ISG 200 2 10 0.3459 0.2506 ... 0.354 ... 0.2978
ISG 200 2 8 0.3412 0.2498 ... 0.2948 ... 0.3875
ISG 200 2 6 0.3676 0.2476 ... 0.3806 ... 0.365
ISG 200 1 10 0.3705 0.2486 ... 0.3176 ... 0.3605
ISG 200 1 8 0.3716 0.1687 ... 0.3769 ... 0.4266
ISG 200 1 6 0.3923 0.2681 ... 0.4274 ... 0.4347
ISG 100 3 10 0.3585 0.1762 ... 0.3202 ... 0.2756
ISG 100 3 8 0.3712 0.2358 ... 0.4196 ... 0.372
ISG 100 3 6 0.3452 0.154 ... 0.3542 ... 0.3738
ISG 100 2 10 0.3987 0.2549 ... 0.3707 ... 0.3531
ISG 100 2 8 0.3916 0.293 ... 0.4189 ... 0.3488
ISG 100 2 6 0.3815 0.308 ... 0.399 ... 0.3824
ISG 100 1 10 0.4163 0.3213 ... 0.4711 ... 0.3737
ISG 100 1 8 0.3996 0.1543 ... 0.4413 ... 0.4194
ISG 100 1 6 0.3932 0.206 ... 0.3831 ... 0.392

77

Table A.5: The table shows the results of the periodic evaluation of the ISG model and
the AP dataset for the categorization task, measured with purity clustering. Although
the full table is too large for this paper, it can be accessed on the documentation page
at https://dccuchile.github.io/rivertext/. The bold remark represents the best result on av-
erage.

Model Emb. size Window size Num. N. S. Mean T1 ... T15 ... T31
ISG 300 3 10 0.317 0.2161 ... 0.2819 ... 0.3279
ISG 300 3 8 0.3117 0.1782 ... 0.2709 ... 0.2704
ISG 300 3 6 0.3406 0.1838 ... 0.3452 ... 0.2674
ISG 300 2 10 0.3372 0.221 ... 0.4176 ... 0.3231
ISG 300 2 8 0.3452 0.1428 ... 0.3973 ... 0.3189
ISG 300 2 6 0.3353 0.2175 ... 0.3276 ... 0.3201
ISG 300 1 10 0.3809 0.2527 ... 0.3859 ... 0.317
ISG 300 1 8 0.3694 0.1444 ... 0.3511 ... 0.3729
ISG 300 1 6 0.364 0.2389 ... 0.3603 ... 0.3993
ISG 200 3 10 0.3452 0.2448 ... 0.327 ... 0.2905
ISG 200 3 8 0.3555 0.277 ... 0.3232 ... 0.326
ISG 200 3 6 0.3399 0.2248 ... 0.387 ... 0.2831
ISG 200 2 10 0.3459 0.2506 ... 0.354 ... 0.2978
ISG 200 2 8 0.3412 0.2498 ... 0.2948 ... 0.3875
ISG 200 2 6 0.3676 0.2476 ... 0.3806 ... 0.365
ISG 200 1 10 0.3705 0.2486 ... 0.3176 ... 0.3605
ISG 200 1 8 0.3716 0.1687 ... 0.3769 ... 0.4266
ISG 200 1 6 0.3923 0.2681 ... 0.4274 ... 0.4347
ISG 100 3 10 0.3585 0.1762 ... 0.3202 ... 0.2756
ISG 100 3 8 0.3712 0.2358 ... 0.4196 ... 0.372
ISG 100 3 6 0.3452 0.154 ... 0.3542 ... 0.3738
ISG 100 2 10 0.3987 0.2549 ... 0.3707 ... 0.3531
ISG 100 2 8 0.3916 0.293 ... 0.4189 ... 0.3488
ISG 100 2 6 0.3815 0.308 ... 0.399 ... 0.3824
ISG 100 1 10 0.4163 0.3213 ... 0.4711 ... 0.3737
ISG 100 1 8 0.3996 0.1543 ... 0.4413 ... 0.4194
ISG 100 1 6 0.3932 0.206 ... 0.3831 ... 0.392

78

Table A.6: The table shows the results of the periodic evaluation of the IWCM model and
the MEN dataset for the similarity task, measured with Spearman’s correlation. Although
the full table is too large for this paper, it can be accessed on the documentation page
at https://dccuchile.github.io/rivertext/.. The bold remark represents the best result on
average.

Model Emb. size Window size Num. N. S. Mean T1 ... T15 ... T31
IWCM 300 3 1000 0.439 0.2346 ... 0.458 ... 0.500
IWCM 300 3 750 0.4275 0.2211 ... 0.4507 ... 0.4825
IWCM 300 3 500 0.4314 0.2364 ... 0.4551 ... 0.4786
IWCM 300 2 1000 0.4203 0.2251 ... 0.4357 ... 0.4846
IWCM 300 2 750 0.4042 0.2176 ... 0.4204 ... 0.4660
IWCM 300 2 500 0.4033 0.2216 ... 0.4187 ... 0.4592
IWCM 300 1 1000 0.3917 0.1828 ... 0.4118 ... 0.4573
IWCM 300 1 750 0.3625 0.1627 ... 0.3811 ... 0.4261
IWCM 300 1 500 0.3564 0.1647 ... 0.374 ... 0.408
IWCM 200 3 1000 0.4384 0.2217 ... 0.455 ... 0.5007
IWCM 200 3 750 0.4276 0.2197 ... 0.4512 ... 0.4866
IWCM 200 3 500 0.4325 0.2345 ... 0.4571 ... 0.4781
IWCM 200 2 1000 0.4193 0.2133 ... 0.4345 ... 0.4830
IWCM 200 2 750 0.4032 0.2013 ... 0.4153 ... 0.4654
IWCM 200 2 500 0.4043 0.2208 ... 0.4243 ... 0.4532
IWCM 200 1 1000 0.3868 0.1796 ... 0.4049 ... 0.4473
IWCM 200 1 750 0.3597 0.1722 ... 0.3729 ... 0.4205
IWCM 200 1 500 0.3511 0.1705 ... 0.3658 ... 0.4023
IWCM 100 3 1000 0.4396 0.2211 ... 0.4607 ... 0.4996
IWCM 100 3 750 0.4289 0.2112 ... 0.4475 ... 0.4871
IWCM 100 3 500 0.4302 0.216 ... 0.4539 ... 0.4766
IWCM 100 2 1000 0.4175 0.2143 ... 0.4313 ... 0.4804
IWCM 100 2 750 0.4043 0.2006 ... 0.4208 ... 0.4627
IWCM 100 2 500 0.4000 0.205 ... 0.4203 ... 0.4489
IWCM 100 1 1000 0.3787 0.1762 ... 0.4013 ... 0.4402
IWCM 100 1 750 0.3543 0.1703 ... 0.3717 ... 0.4136
IWCM 100 1 500 0.3442 0.1690 ... 0.3568 ... 0.3916

79

Table A.7: The table shows the results of the periodic evaluation of the IWCM model and
the Mturk dataset for the similarity task, measured with Spearman’s correlation. Although
the full table is too large for this paper, it can be accessed on the documentation page
at https://dccuchile.github.io/rivertext/. The bold remark represents the best result on
average.

Model Emb. size Window size Num. N. S. Mean T1 ... T15 ... T31
IWCM 300 3 1000 0.3496 0.2388 ... 0.3631 ... 0.3926
IWCM 300 3 750 0.3386 0.2582 ... 0.3346 ... 0.3598
IWCM 300 3 500 0.3235 0.2239 ... 0.3395 ... 0.3519
IWCM 300 2 1000 0.3343 0.1887 ... 0.3351 ... 0.3674
IWCM 300 2 750 0.3352 0.2128 ... 0.3414 ... 0.3627
IWCM 300 2 500 0.3231 0.2396 ... 0.3452 ... 0.2989
IWCM 300 1 1000 0.3462 0.2097 ... 0.3656 ... 0.36
IWCM 300 1 750 0.3737 0.2188 ... 0.3925 ... 0.3587
IWCM 300 1 500 0.3577 0.2534 ... 0.353 ... 0.3006
IWCM 200 3 1000 0.3508 0.262 ... 0.3379 ... 0.3836
IWCM 200 3 750 0.3392 0.2513 ... 0.3285 ... 0.3617
IWCM 200 3 500 0.331 0.2284 ... 0.3355 ... 0.3404
IWCM 200 2 1000 0.3434 0.2469 ... 0.3338 ... 0.3973
IWCM 200 2 750 0.3389 0.2351 ... 0.3367 ... 0.3727
IWCM 200 2 500 0.3337 0.2216 ... 0.3613 ... 0.315
IWCM 200 1 1000 0.3409 0.1869 ... 0.3694 ... 0.3422
IWCM 200 1 750 0.3722 0.1966 ... 0.3906 ... 0.3467
IWCM 200 1 500 0.3618 0.2327 ... 0.3478 ... 0.3265
IWCM 100 3 1000 0.343 0.2461 ... 0.3412 ... 0.3739
IWCM 100 3 750 0.3359 0.2859 ... 0.3386 ... 0.373
IWCM 100 3 500 0.3381 0.2619 ... 0.3478 ... 0.3487
IWCM 100 2 1000 0.3402 0.2437 ... 0.3387 ... 0.3725
IWCM 100 2 750 0.3397 0.2635 ... 0.3165 ... 0.3689
IWCM 100 2 500 0.3413 0.3014 ... 0.3706 ... 0.3215
IWCM 100 1 1000 0.3292 0.2256 ... 0.3333 ... 0.3411
IWCM 100 1 750 0.344 0.2512 ... 0.3402 ... 0.3475
IWCM 100 1 500 0.3471 0.2714 ... 0.3642 ... 0.3501

80

Table A.8: The table shows the results of the periodic evaluation of the IWCM model and
the AP dataset for the categorization task, measured with purity clustering. Although the
full table is too large for this paper, it can be accessed on the documentation page at
https://dccuchile.github.io/rivertext/. The bold remark represents the best result on av-
erage.

Model Emb. size Window size Num. N. S. Mean T1 ... T15 ... T31
IWCM 300 3 1000 0.3069 0.2139 ... 301 ... 0.3209
IWCM 300 3 750 0.3032 0.2114 ... 0.2985 ... 0.3184
IWCM 300 3 500 0.2855 0.1915 ... 296 ... 0.3134
IWCM 300 2 1000 0.3084 0.2015 ... 0.3234 ... 0.3483
IWCM 300 2 750 0.3003 0.2264 ... 0.3035 ... 0.3557
IWCM 300 2 500 0.2811 0.2015 ... 0.2861 ... 0.301
IWCM 300 1 1000 0.2974 0.2114 ... 0.3184 ... 0.3458
IWCM 300 1 750 0.2764 0.2139 ... 0.2836 ... 0.2836
IWCM 300 1 500 0.2614 0.194 ... 0.2562 ... 0.2836
IWCM 200 3 1000 0.3074 0.2264 ... 0.3333 ... 0.3284
IWCM 200 3 750 0.3107 0.2139 ... 0.3234 ... 0.3284
IWCM 200 3 500 0.29 0.199 ... 0.2985 ... 0.3507
IWCM 200 2 1000 0.3083 0.2139 ... 0.3209 ... 0.3184
IWCM 200 2 750 0.309 0.199 ... 0.3259 ... 0.3582
IWCM 200 2 500 0.2853 0.2164 ... 0.306 ... 0.3085
IWCM 200 1 1000 0.3022 0.1965 ... 0.3109 ... 0.3333
IWCM 200 1 750 0.2834 0.204 ... 0.3035 ... 0.301
IWCM 200 1 500 0.2668 0.2214 ... 0.2736 ... 0.3109
IWCM 100 3 1000 0.3194 0.2264 ... 0.3284 ... 0.3308
IWCM 100 3 750 0.3181 0.2189 ... 0.3234 ... 0.3209
IWCM 100 3 500 0.2972 0.2239 ... 0.2886 ... 0.3134
IWCM 100 2 1000 0.3176 0.2214 ... 0.3358 ... 0.3483
IWCM 100 2 750 0.3189 0.1915 ... 0.3358 ... 0.3507
IWCM 100 2 500 0.2935 0.2189 ... 0.2886 ... 0.3109
IWCM 100 1 1000 0.3076 0.209 ... 0.3184 ... 0.3308
IWCM 100 1 750 0.2898 0.209 ... 0.2836 ... 0.3234
IWCM 100 1 500 0.2848 0.2239 ... 0.296 ... 0.3209

81

Annex B

Time serie plots

In this section, we present the results of different hyperparameter settings, considering the
number of instances trained per period, in the three test datasets that were studied. For
each set of results, the period p was set at 3,200,000 instances.

82

Figure B.1: In this experiment, we evaluated the performance of three incremental word
embedding models, IWCM, ISG, and ICBOW, using the Periodic Evaluation technique for
the similarity and categorization task using the hyperparameter settings of emb size = 100,
window size = 1, ns samples = 1, and context size = 500 across the training phase. The
period p was set as 3,200,000 instances, which means the evaluator of the period evaluation
was applied every 3,200,000 training instances.

83

Figure B.2: In this experiment, we evaluated the performance of three incremental word
embedding models, IWCM, ISG, and ICBOW, using the Periodic Evaluation technique for
the similarity and categorization task using the hyperparameter settings of embsize = 100,
windowsize = 1, nssamples = 8, and contextsize = 750across the training phase. The
period p was set as 3,200,000 instances, which means the evaluator of the period evaluation
was applied every 3,200,000 training instances.

84

Figure B.3: In this experiment, we evaluated the performance of three incremental word
embedding models, IWCM, ISG, and ICBOW, using the Periodic Evaluation technique for
the similarity and categorization task using the hyperparameter settings of embsize = 100,
windowsize = 1, nssamples = 10, and contextsize = 1000 across the training phase. The
period p was set as 3,200,000 instances, which means the evaluator of the period evaluation
was applied every 3,200,000 training instances.

85

Figure B.4: In this experiment, we evaluated the performance of three incremental word
embedding models, IWCM, ISG, and ICBOW, using the Periodic Evaluation technique for
the similarity and categorization task using the hyperparameter settings of emb size = 100,
window size = 2, ns samples = 6, and context size = 500 across the training phase. The
period p was set as 3,200,000 instances, which means the evaluator of the period evaluation
was applied every 3,200,000 training instances.

86

Figure B.5: In this experiment, we evaluated the performance of three incremental word
embedding models, IWCM, ISG, and ICBOW, using the Periodic Evaluation technique for
the similarity and categorization task using the hyperparameter settings of emb size = 100,
window size = 2, ns samples = 8, and context size = 750 across the training phase. The
period p was set as 3,200,000 instances, which means the evaluator of the period evaluation
was applied every 3,200,000 training instances.

87

Figure B.6: In this experiment, we evaluated the performance of three incremental word
embedding models, IWCM, ISG, and ICBOW, using the Periodic Evaluation technique for
the similarity and categorization task using the hyperparameter settings of emb size = 100,
window size = 2, ns samples = 10, and context size = 1000 across the training phase. The
period p was set as 3,200,000 instances, which means the evaluator of the period evaluation
was applied every 3,200,000 training instances.

88

Figure B.7: In this experiment, we evaluated the performance of three incremental word
embedding models, IWCM, ISG, and ICBOW, using the Periodic Evaluation technique for
the similarity and categorization task using the hyperparameter settings of emb size = 100,
window size = 3, ns samples = 6, and context size = 500 across the training phase. The
period p was set as 3,200,000 instances, which means the evaluator of the period evaluation
was applied every 3,200,000 training instances.

89

Figure B.8: In this experiment, we evaluated the performance of three incremental word
embedding models, IWCM, ISG, and ICBOW, using the Periodic Evaluation technique for
the similarity and categorization task using the hyperparameter settings of emb size = 100,
window size = 3, ns samples = 8, and context size = 750 across the training phase. The
period p was set as 3,200,000 instances, which means the evaluator of the period evaluation
was applied every 3,200,000 training instances.

90

Figure B.9: In this experiment, we evaluated the performance of three incremental word
embedding models, IWCM, ISG, and ICBOW, using the Periodic Evaluation technique for
the similarity and categorization task using the hyperparameter settings of emb size = 100,
window size = 3, ns samples = 10, and context size = 1000 across the training phase. The
period p was set as 3,200,000 instances, which means the evaluator of the period evaluation
was applied every 3,200,000 training instances.

91

Figure B.10: In this experiment, we evaluated the performance of three incremental word
embedding models, IWCM, ISG, and ICBOW, using the Periodic Evaluation technique for
the similarity and categorization task using the hyperparameter settings of emb size = 200,
window size = 1, ns samples = 6, and context size = 500 across the training phase. The
period p was set as 3,200,000 instances, which means the evaluator of the period evaluation
was applied every 3,200,000 training instances.

92

Figure B.11: In this experiment, we evaluated the performance of three incremental word
embedding models, IWCM, ISG, and ICBOW, using the Periodic Evaluation technique for
the similarity and categorization task using the hyperparameter settings of emb size = 200,
window size = 1, ns samples = 8, and context size = 750 across the training phase. The
period p was set as 3,200,000 instances, which means the evaluator of the period evaluation
was applied every 3,200,000 training instances.

93

Figure B.12: In this experiment, we evaluated the performance of three incremental word
embedding models, IWCM, ISG, and ICBOW, using the Periodic Evaluation technique for
the similarity and categorization task using the hyperparameter settings of emb size = 200,
window size = 1, ns samples = 10, and context size = 1000 across the training phase. The
period p was set as 3,200,000 instances, which means the evaluator of the period evaluation
was applied every 3,200,000 training instances.

94

Figure B.13: In this experiment, we evaluated the performance of three incremental word
embedding models, IWCM, ISG, and ICBOW, using the Periodic Evaluation technique for
the similarity and categorization task using the hyperparameter settings of emb size = 200,
window size = 2, ns samples = 6, and context size = 500 across the training phase. The
period p was set as 3,200,000 instances, which means the evaluator of the period evaluation
was applied every 3,200,000 training instances.

95

Figure B.14: In this experiment, we evaluated the performance of three incremental word
embedding models, IWCM, ISG, and ICBOW, using the Periodic Evaluation technique for
the similarity and categorization task using the hyperparameter settings of emb size = 200,
window size = 2, ns samples = 8, and context size = 750 across the training phase. The
period p was set as 3,200,000 instances, which means the evaluator of the period evaluation
was applied every 3,200,000 training instances.

96

Figure B.15: In this experiment, we evaluated the performance of three incremental word
embedding models, IWCM, ISG, and ICBOW, using the Periodic Evaluation technique for
the similarity and categorization task using the hyperparameter settings of emb size = 200,
window size = 2, ns samples = 10, and context size = 1000 across the training phase. The
period p was set as 3,200,000 instances, which means the evaluator of the period evaluation
was applied every 3,200,000 training instances.

97

Figure B.16: In this experiment, we evaluated the performance of three incremental word
embedding models, IWCM, ISG, and ICBOW, using the Periodic Evaluation technique for
the similarity and categorization task using the hyperparameter settings of emb size = 200,
window size = 3, ns samples = 6, and context size = 500 across the training phase. The
period p was set as 3,200,000 instances, which means the evaluator of the period evaluation
was applied every 3,200,000 training instances.

98

Figure B.17: In this experiment, we evaluated the performance of three incremental word
embedding models, IWCM, ISG, and ICBOW, using the Periodic Evaluation technique for
the similarity and categorization task using the hyperparameter settings of emb size = 200,
window size = 3, ns samples = 8, and context size = 750 across the training phase. The
period p was set as 3,200,000 instances, which means the evaluator of the period evaluation
was applied every 3,200,000 training instances.

99

Figure B.18: In this experiment, we evaluated the performance of three incremental word
embedding models, IWCM, ISG, and ICBOW, using the Periodic Evaluation technique for
the similarity and categorization task using the hyperparameter settings of emb size = 200,
window size = 3, ns samples = 10, and context size = 1000across the training phase. The
period p was set as 3,200,000 instances, which means the evaluator of the period evaluation
was applied every 3,200,000 training instances.

100

Figure B.19: In this experiment, we evaluated the performance of three incremental word
embedding models, IWCM, ISG, and ICBOW, using the Periodic Evaluation technique for
the similarity and categorization task using the hyperparameter settings of emb size = 300,
window size = 1, ns samples = 6, and context size = 500 across the training phase. The
period p was set as 3,200,000 instances, which means the evaluator of the period evaluation
was applied every 3,200,000 training instances.

101

Figure B.20: In this experiment, we evaluated the performance of three incremental word
embedding models, IWCM, ISG, and ICBOW, using the Periodic Evaluation technique for
the similarity and categorization task using the hyperparameter settings of emb size = 300,
window size = 1, ns samples = 8, and context size = 750 across the training phase. The
period p was set as 3,200,000 instances, which means the evaluator of the period evaluation
was applied every 3,200,000 training instances.

102

Figure B.21: In this experiment, we evaluated the performance of three incremental word
embedding models, IWCM, ISG, and ICBOW, using the Periodic Evaluation technique for
the similarity and categorization task using the hyperparameter settings of emb size = 300,
window size = 1, ns samples = 10, and context size = 1000 across the training phase. The
period p was set as 3,200,000 instances, which means the evaluator of the period evaluation
was applied every 3,200,000 training instances.

103

Figure B.22: In this experiment, we evaluated the performance of three incremental word
embedding models, IWCM, ISG, and ICBOW, using the Periodic Evaluation technique for
the similarity and categorization task using the hyperparameter settings of emb size = 300,
window size = 2, ns samples = 6, and context size = 500 across the training phase. The
period p was set as 3,200,000 instances, which means the evaluator of the period evaluation
was applied every 3,200,000 training instances.

104

Figure B.23: In this experiment, we evaluated the performance of three incremental word
embedding models, IWCM, ISG, and ICBOW, using the Periodic Evaluation technique for
the similarity and categorization task using the hyperparameter settings of emb size = 300,
window size = 2, ns samples = 8, and context size = 750 across the training phase. The
period p was set as 3,200,000 instances, which means the evaluator of the period evaluation
was applied every 3,200,000 training instances.

105

Figure B.24: In this experiment, we evaluated the performance of three incremental word
embedding models, IWCM, ISG, and ICBOW, using the Periodic Evaluation technique for
the similarity and categorization task using the hyperparameter settings of emb size = 300,
window size = 2, ns samples = 10, and context size = 1000 across the training phase. The
period p was set as 3,200,000 instances, which means the evaluator of the period evaluation
was applied every 3,200,000 training instances.

106

Figure B.25: In this experiment, we evaluated the performance of three incremental word
embedding models, IWCM, ISG, and ICBOW, using the Periodic Evaluation technique for
the similarity and categorization task using the hyperparameter settings of emb size = 300,
window size = 3, ns samples = 6, and context size = 500 across the training phase. The
period p was set as 3,200,000 instances, which means the evaluator of the period evaluation
was applied every 3,200,000 training instances.

107

Figure B.26: In this experiment, we evaluated the performance of three incremental word
embedding models, IWCM, ISG, and ICBOW, using the Periodic Evaluation technique for
the similarity and categorization task using the hyperparameter settings of emb size = 300,
window size = 3, ns samples = 8, and context size = 750 across the training phase. The
period p was set as 3,200,000 instances, which means the evaluator of the period evaluation
was applied every 3,200,000 training instances.

108

Figure B.27: In this experiment, we evaluated the performance of three incremental word
embedding models, IWCM, ISG, and ICBOW, using the Periodic Evaluation technique for
the similarity and categorization task using the hyperparameter settings of emb size = 300,
window size = 3, ns samples = 10, and context size = 1000 across the training phase.The
period p was set as 3,200,000 instances, which means the evaluator of the period evaluation
was applied every 3,200,000 training instances.

109

	Introduction
	Problem Statement
	Research Hypothesis
	Objectives
	General Objectives
	Specific Objectives

	Methodology
	Research Outcome
	Outline

	Background and Related Work
	Scientific Disciplines
	Artificial Intelligence
	Machine Learning
	Deep Learning and Feedfoward Neural Network
	Natural Language Processing
	Incremental and Streaming Learning
	Instance and Batch Incremental Learning

	Word Representation
	One Hot Representation
	Distributional Hypothesis and Distributional Representations
	Word Context Matrices
	Distributed Representation or Word Embeddings
	Other methods

	Intrinsic NLP Tasks
	Streaming in Word Embedding models
	Related Work
	Incremental Word Embedding Models
	Stream Machine Learning Libraries
	Intrinsic Evaluation

	RiverText Foundations
	Misra Greis Algorithm
	Incremental Learning Approaches
	Periodic Evaluation
	Implemented Methods
	Incremental Word Context Matrix
	Incremental Word2Vec

	Experiments and Results
	Data
	Experimental setup
	Hyperparameter settings
	Results and discussion

	RiverText Library
	Motivation
	Components
	Word Embedding Model
	Periodic Evaluation
	Utils
	Training Process

	Conclusion and Future Work
	Conclusion
	Future Work

	Bibliography
	Annexes
	Annex Experiment Results by Task and Model
	Annex Time serie plots

