
ar
X

iv
:2

50
6.

22
21

0v
1 

 [
cs

.I
R

] 
 2

7 
Ju

n 
20

25

UiS-IAI@LiveRAG: Retrieval-Augmented Information
Nugget-Based Generation of Responses

Weronika Łajewska
University of Stavanger
Stavanger, Norway

weronika.lajewska@uis.no

Ivica Kostric
University of Stavanger
Stavanger, Norway
ivica.kostric@uis.no

Gabriel Iturra-Bocaz
University of Stavanger
Stavanger, Norway

gabriel.e.iturrabocaz@uis.no

Mariam Arustashvili
University of Stavanger
Stavanger, Norway

mariam.arustashvili@uis.no

Krisztian Balog
University of Stavanger
Stavanger, Norway

krisztian.balog@uis.no

Abstract
Retrieval-augmented generation (RAG) faces challenges related to
factual correctness, source attribution, and response completeness.
The LiveRAG Challenge hosted at SIGIR’25 aims to advance RAG
research using a fixed corpus and a shared, open-source LLM. We
propose a modular pipeline that operates on information nuggets—
minimal, atomic units of relevant information extracted from re-
trieved documents. This multistage pipeline encompasses query
rewriting, passage retrieval and reranking, nugget detection and
clustering, cluster ranking and summarization, and response flu-
ency enhancement. This design inherently promotes grounding in
specific facts, facilitates source attribution, and ensures maximum
information inclusion within length constraints. In this challenge,
we extend our focus to also address the retrieval component of
RAG, building upon our prior work on multi-faceted query rewrit-
ing. Furthermore, for augmented generation, we concentrate on
improving context curation capabilities, maximizing the breadth
of information covered in the response while ensuring pipeline
efficiency. Our results show that combining original queries with a
few sub-query rewrites boosts recall, while increasing the number
of documents used for reranking and generation beyond a certain
point reduces effectiveness, without improving response quality.

CCS Concepts
• Computing methodologies→ Natural language generation;
• Information systems→ Information extraction.
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1 Introduction
The increasing reliance on conversational assistants such as Chat-
GPT for complex open-ended queries [2, 9, 42] presents challenges
in factual correctness [16, 18, 35], source attribution [32], informa-
tion verifiability [23], consistency, and coverage [11]. Although
retrieval-augmented generation models aim to build responses
based on retrieved sources [11, 14, 22], they often struggle with
transparency and source attribution. Current generative search

This work is licensed under a Creative Commons Attribution 4.0 International License.

engines frequently produce unsupported claims and inaccurate ci-
tations [23], underscoring the need for more reliable grounding.
Although injecting evidence into prompts can mitigate hallucina-
tions, long and redundant contexts can lead to the “lost in the
middle” problem, where relevant information becomes inaccessi-
ble [24]. A post-retrieval refinement step is recommended to retain
only essential details while preserving key information [10].

To address these limitations, we use amodular system for retrieval-
augmented nugget-based response generation. It combines a strong
retrieval pipeline with query rewriting, sparse and dense retrieval,
and reranking with Grounded Information Nugget-Based GEnera-
tion of Responses (GINGER) [21] (see Figure 1). Unlike traditional
RAG approaches, our method operates on atomic units of relevant
information, called information nuggets [26]. Response generation
involves identifying and clustering nuggets detected in retrieved
passages, ranking clusters by relevance, summarizing them to elim-
inate redundancy, and then refining these summaries into a final,
cohesive response. This process ensures comprehensive yet concise
answers, maintains strong source attribution, and, as demonstrated
in the TREC RAG’24 augmented generation task, significantly out-
performs strong baselines. The core strength of GINGER lies in the
granular, nugget-based processing of highly relevant information.

When developing our pipeline for the LiveRAG Challenge,1, we
conducted experiments on the TREC RAG’24 dataset as well as a
small test dataset generated with DataMorgana [7]. Our results
show that naive answer-based or single sub-question query rewrit-
ing can harm retrieval effectiveness, while combining the original
query with a few diverse rewrites improves recall. Furthermore, op-
timizing reranking and generation parameters reveals that response
quality improves only up to a point, beyond which sacrificing time
efficiency yields limited gains.

2 Related Work
Unlike traditional search engines that return a ranked list of docu-
ments, RAG systems provide a single, comprehensive response by
synthesizing varied perspectives from multiple sources, blending
the language fluency and world knowledge of generative mod-
els with retrieved evidence [11, 25]. In retrieve-then-generate sys-
tems, generative processes are conditioned on retrieved material by

1https://liverag.tii.ae/
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Figure 1: High-level overview of our retrieval-augmented nugget-based response generation pipeline (GINGER).

adding evidence to the prompt [15, 31, 33] or attending to sources
during inference.

Systems submitted to the Retrieval-Augmented Generation track
at the Text REtrieval Conference (TREC RAG’24) [29] have adopted
modular architectures that improve the retrieval component by
combining sparse and dense retrieval models, followed by rerank-
ing with models such as MonoT5 and DuoT5 [27], RankZephyr [28],
or other LLM-based graded relevance scoring. A notable enhance-
ment involves query decomposition using an LLM to generate
sub-questions, each addressing different facets of the information
need. While LLM-based rewriting is well-established [5, 39], the
generation of multiple diverse reformulations per query is a more
recent development that shows strong potential for boosting recall
and robustness by expanding the query’s semantic coverage [19, 30].
Retrieved and reranked results from these variants are typically
merged using reciprocal rank fusion (RRF) [38].

For the generation stage, the most simplistic approach is to use
proprietary models to generate responses in a single step based on
the provided documents. However, ad hoc retrieval often returns
documents with only partial relevance [26], and placing relevant
content in the middle of a long prompt can degrade generation
quality [24]. While generative models often produce fluent and
seemingly helpful responses, they frequently suffer from hallucina-
tions and factual errors [16, 20, 23, 36]. These limitations motivate
more advanced context curation strategies, including unimportant
token removal [17], content aggregation [43], and training extrac-
tors and condensers [40, 41]. Approaches at TREC RAG’24 include
extracting, combining, and condensing the relevant information [8],
enhanced by verifying key facts across documents, rule-based re-
dundancy removal, and enhancing coherence [6].

3 Retrieval-Augmented Nugget-Based Response
Generation

Our approach, GINGER (which stands for Grounded Information
Nugget-Based GEneration of Responses), operates on informa-
tion nuggets. It explicitly models various facets of the query based
on retrieved information and generates a concise response that
adheres to length constraints. It generates the response in three
steps by: (1) retrieving top relevant passages from the corpus, (2)
curating retrieved context for response generation, and (3) synthe-
sizing the collected information into a final response; see Figure 1.
Our implementation adopts a modular architecture, with clearly

separated components for each stage of the pipeline. This design
allows for flexible experimentation and independent development
of each component. All generation tasks, including query rewriting
and context curation, are performed with the Falcon3-10B model2
accessed via the AI71 platform API.3

3.1 Document Retrieval
To reduce omissions caused by narrow queries, we apply query
rewriting before retrieval. An LLM, queried without external doc-
uments, first generates a short answer to the original question.
The assumption is that this intermediate answer surfaces the key
aspects of the information need. We then ask the same model to
generate 𝑙 additional queries, each focusing on a different aspect
of that provisional answer while staying semantically consistent
with the initial query.4 We combine each expanded query with the
original, and then concatenate all 𝑙 rewrites together to create a
final search string. Formally,

𝑞′ = (𝑞 + 𝑞′1) + · · · + (𝑞 + 𝑞′
𝑙
)

where 𝑞 is the original query, and each 𝑞′
𝑖
is a rewrite focusing on a

different aspect of the intermediate answer.
For retrieval, we adopt a two-stage retrieval pipeline, consisting

of an initial passage retrieval step followed by re-ranking. First-pass
retrieval is a combination of rankings obtained using both sparse
and dense text representations. We use BM25 for sparse retrieval
with an Opensearch-based index5 and intfloat/e5-base-v26 em-
beddings with a Pinecone dense index.7 Both indices are pre-built
and provided by the challenge organizers. The retrieval results are
then combined using reciprocal rank fusion [4]. For re-ranking,
we first apply a pointwise re-ranker (castorini/monot5-base-
msmarco),8 followed by a pairwise re-ranker (castorini/duot5-
base-msmarco),9 both fine-tuned on the MS MARCO collection [3],
to refine the ranking and improve retrieval effectiveness.

2https://huggingface.co/tiiuae/Falcon3-10B-Instruct
3https://ai71.ai/
4Prompts used for query rewriting can be found in Appendix B.1.
5https://opensearch.org/
6https://huggingface.co/intfloat/e5-base-v2
7https://www.pinecone.io/
8https://huggingface.co/castorini/monot5-base-msmarco
9https://huggingface.co/castorini/duot5-base-msmarco
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3.2 Context Curation
Given the retrieved passages, GINGER curates the context before
the generation step to optimize response grounding and informa-
tion relevance. First, we detect information nuggets within the
top-𝑚 ranked passages by prompting an LLM to annotate key in-
formation without altering the original text.10 Detected nuggets
are then clustered according to different query facets to reduce
redundancy and increase information density [1], leveraging the
BERTopic model [13]. Next, facet clusters are ranked for relevance
using DuoT5 pairwise reranking ensuring that the most crucial
clusters are prioritized for response generation [10, 24]. This struc-
tured approach enables GINGER to distill key information while
preserving source attribution.

3.3 Response Generation
In the last step, GINGER transforms the ranked facet clusters into a
coherent response. Each top-ranked cluster is independently sum-
marized into one sentence, following a prompt design that enforces
conciseness and faithfulness to the original content [12, 34].11 This
modular summarization process ensures that the response remains
factually accurate and grounded. However, since the response com-
posed of independently summarized texts may lack fluency and
coherence, we introduce a final refinement step where an LLM
rephrases the response without introducing additional content.
This ensures that the final output is not only factually reliable but
also natural and readable, improving the overall user experience.

3.4 Batch Processing Details
To improve the efficiency of our pipeline, queries are processed in
batches. We implemented multiprocessing with a concurrent queu-
ing system, allowing each pipeline component to operate indepen-
dently as long as its input queue is populated. This prevented bot-
tlenecks and maximized hardware utilization. GPU-intensive com-
ponents were distributed across 12 GPUs, with pointwise reranking
and response generation using 25% of total GPU resources and
pairwise reranking the remaining 75%. During the challenge day,
we used 8 Tesla V100 GPUs and 4 NVIDIA A100 GPUs.

4 Experiments
In our experiments, we investigate our system’s robustness with
respect to the quality of the retrieved information. We also evaluate
its ability to synthesize content from retrieved passages and reduce
redundancy. The main goal of these experiments is to find a balance
between efficiency—ensuring that responses can be generated for
all test queries within a limited time window on the challenge
day—and the quality of the generated responses.

4.1 Datasets
We generated a test set of 100 instances using the DataMorgana
API, a synthetic benchmark generator platform used in the Liv-
eRAG challenge [7]. DataMorgana enables RAG developers to cre-
ate synthetic questions and answers from a given corpus based on
configurable instructions. Half of the questions in our test set have

10Prompts used for context curation can be found in Appendix B.2.
11Prompts used for response generation can be found in Appendix B.3.

answers grounded in a single document, while the other half are
based on two documents. We experimented with several question
categorizations proposed in the original paper, including factu-
ality, premise, phrasing, and linguistic variation (see Table 3 in
Appendix A). Additionally, we incorporated the user expertise cate-
gorization and introduced two new categories for multi-document
questions: comparisons between two entities and questions cov-
ering two aspects of the same topic. The documents provided by
DataMorgana for each question are treated as ground-truth pas-
sages, and the generated answers serve as references to evaluate
our system’s responses.

We additionally employed the TREC RAG’24 dataset [29], de-
rived from the MS MARCO v2.1 collection and containing 301
information-seeking queries with graded relevance judgments. Un-
like DataMorgana, which offers at most two judged passages per
query, TREC RAG provides relevance labels for many candidate
documents, giving a more reliable signal for retrieval evaluation.
We used these judgments to benchmark the query rewriting com-
ponent.

4.2 Evaluation
We evaluate the effectiveness of query rewriting primarily using the
TREC RAG’24 dataset. The main metric is Recall@500, computed
using the trec_eval tool.12 This cutoff corresponds to the number
of top-ranked documents passed onto the pointwise reranker. We
use the original query without any rewriting as the baseline.

For response generation, we use the AutoNuggetizer framework
proposed for RAG evaluation and validated at TREC RAG’24 [29].
AutoNuggetizer comprises two steps: nugget creation and nugget
assignment. In nugget creation, nuggets are formulated based on
relevant documents and classified as either “vital” or “okay” [37].
The second step, nugget assignment, involves assessing whether
a system response contains specific nuggets from the answer key.
The score 𝑉𝑠𝑡𝑟𝑖𝑐𝑡 for the system’s response is defined as:

𝑉𝑠𝑡𝑟𝑖𝑐𝑡 =

∑
𝑖 𝑠𝑠

𝑣
𝑖

|𝑛𝑣 | ,

where 𝑛𝑣 represents the subset of the vital nuggets, and 𝑠𝑠𝑣
𝑖
is 1 if

the response supports the i-th nugget and is 0 otherwise. The score
of a system is the mean of the scores across all queries.

4.3 Results
Results in Table 1 show that using a single rewrite alone underper-
forms even the original query, suggesting that naive rewriting can
hurt retrieval effectiveness. While combining the original query
with multiple rewrites improves recall, the gains saturate quickly.
Adding more than three rewrites yields only marginal improve-
ments, indicating diminishing returns beyond a small number of
diverse reformulations. Notably, the recall achieved by using mul-
tiple rewrites alone is consistently lower than the recall obtained
when those rewrites are concatenated with the original query, un-
derscoring the importance of preserving the original formulation.13

12https://github.com/usnistgov/trec_eval
13These experiments use TREC RAG data with a different retrieval collection, so the
comparison to our pipeline is not direct. However, since we evaluate only the query
rewriting component with retrieval frozen, the findings are expected to generalize to
similar retrieval setups.
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Table 1: Recall@500 for different query rewriting strategies
on the TREC RAG’24 dataset. The best-performing config-
uration is shown in bold. Teal background indicates the
configuration used in the final submission.

Rewriting Strategy R@500

Original Query 0.320
Single Rewrite 0.217
Multi Rewrite (3) 0.325
Multi Rewrite (10) 0.357
Original Query + Single Rewrite 0.343
Original Query + Multi Rewrite (3) 0.397
Original Query + Multi Rewrite (5) 0.400
Original Query + Multi Rewrite (10) 0.398

Table 2 presents the evaluation of responses generated using
different GINGER configurations, assessed with the AutoNuggetizer
framework. We varied two key parameters: the number of docu-
ments used for pairwise reranking (𝑘) and the number of documents
used for response generation (𝑚). These parameters directly impact
both the quality of the generated responses and the system’s effi-
ciency. The reranking step with DuoT5 scales exponentially with
𝑘 , while the number of Falcon API calls—dependent on𝑚—is the
main bottleneck in information nugget detection.

Given the two-hour time limit for processing 500 queries during
the challenge (with three parallel processes), we aimed for a setup
capable of handling at least 100 queries per hour. Although the
setup with 𝑘 = 50 and 𝑚 = 20 produced the best responses, it
exceeded our time constraints. Configurations with 𝑘 = 40,𝑚 = 10
and 𝑘 = 20,𝑚 = 10 yielded similar scores with much more efficient
runtimes. Despite 𝑘 = 20 scoring slightly higher, we selected 𝑘 = 40
for our final submission to increase topic coverage and response
diversity.

This choice is further supported by the limitations of AutoNugge-
tizer, which evaluates responses using nuggets extracted from only
two documents. As a result, it may overlook relevant content cap-
tured by a broader reranking scope. In our manual analysis, we
observed low scores for responses that were clearly grounded in
relevant retrieved passages but where the available ground-truth
nuggets were sparse. Conversely, high scores occurredmainly when
our responses aligned exactly with the nuggets identified by Au-
toNuggetizer. This suggests that the framework’s effectiveness is
constrained by its limited access to reference passages, which in
turn restricts the evaluation of information quality.

4.4 Lessons Learned
Participating in the LiveRAG challenge underscored the need to
balance time efficiency with handling diverse query types. The time
limit and the diversity of questions generated with DataMorgana
posed unexpected challenges, requiring careful pipeline tuning and
manual analysis.

Our initial query rewriting strategy, designed to sharpen the
focus of the question using potential answer clues, worked well
for factoid questions but underperformed for open-ended queries,
where broader context is needed. This led us to revise our approach:

Table 2: Evaluation with AutoNuggetizer of responses gen-
erated with GINGER using different setups. All variants use
the top 𝑛 = 500 retrieved documents for pointwise reranking.
Teal background indicates the configuration used in the
final submission.

Pairwise Response V_strict Time
reranking generation estimate

𝑘 = 50 𝑚 = 20 0.406 70 min
𝑘 = 40 𝑚 = 10 0.397 41 min
𝑘 = 20 𝑚 = 10 0.404 42 min
𝑘 = 20 𝑚 = 5 0.350 26 min

using rewritten queries only for retrieval to ensure a diverse doc-
ument pool, while letting reranking and generation rely on the
original query to maintain relevance.

To meet the strict time window on challenge day, we had to
rigorously optimize our system for efficiency. This involved exten-
sive use of multiprocessing, batching, and distributing processes
across multiple GPUs. The most resource-intensive component was
the pairwise reranking stage, and the heavy reliance on the Falcon
model across modules strained API rate limits. These constraints
forced us to reduce the number of documents processed at each
stage, carefully balancing efficiency against the quality of generated
responses.

Finally, evaluating the responses with AutoNuggetizer surfaced
key limitations of the framework. Its effectiveness depends on hav-
ing a rich set of ground-truth nuggets derived from a broad set of rel-
evant passages. In practice, especially for open-ended queries, this
was often not the case, leading to unfairly low scores for responses
that were, in fact, well grounded. This experience underlines the
need for more robust response evaluation strategies, particularly
when testing with limited access to ground-truth sources.

5 Conclusions
This paper has presented our participation in the LiveRAG Chal-
lenge at SIGIR’25, proposing amodular system for retrieval-augmen-
ted, nugget-based response generation. Our approach integrates
query rewriting, sparse and dense retrieval, and reranking within
the Grounded Information Nugget-Based Generation of Responses
(GINGER) framework. Evaluation on the TREC RAG’24 dataset and
QA test samples from DataMorgana using the AutoNuggetizer
framework demonstrates that our system effectively balances time
efficiency and response quality.
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Table 3: Categorizations used in DataMorgana to generate
our test samples.

Category Description

Factuality Factoid Seeks a specific fact (e.g., date, number)
Open-ended Invites elaborative or exploratory answers

Premise Direct No premise or context about the user
With
Premise

Includes short user-relevant background info

Phrasing Concise and
Natural

Natural, direct questions (<10 words)

Verbose and
Natural

Natural questions with more than 9 words

Short Search
Query

Keyword-style, <7 words, no punctuation

Long Search
Query

Keyword-style, >6 words, no punctuation

Linguistic
Variation

Similar to
Document

Uses terms and phrasing from the source docu-
ments

Distant from
Document

Uses different wording than the source documents

User Ex-
pertise

Expert Asks complex, domain-specific questions

Common
Person

Asks basic, general-interest questions

Answer
Type

Multi-
Aspect

Covers two aspects of the same topic; needs info
from two documents

Comparison Compares two entities; each described in separate
documents

Appendix
A Datasets
Categorizations used in DataMorgana to generate our test samples
are presented in Table 3.

B Prompts
This section presents all the prompts used by our system for query
rewriting, context curation and final response generation.

B.1 Query Rewriting
Prompt for generating a concise answer to the query using the
Falcon model:

System: You are a knowledgeable question answering AI that
can answer a wide range of queries either in question form
or keywords.
User: {query}.

Prompt for rewriting query into a richer natural language vari-
ant:

System: You are a query rewriter that understands all
necessary components of a good search query and helps
users improve their queries.
User: Rewrite and return 3 query rewrites, each of which
should cover a different aspect of the answer. The query
rewrites should still be relevant to the original query.
Return only the queries, one in each line. Do not add
context, or any other information, or text.

original query: {query}
answer: {answer}

B.2 Context Curation
Prompt for detecting information nuggets in a passage given a
query:

System: You are given a query and a relevant passage.
Your task is to pinpoint and annotate the succinct
excerpts within the passage that directly respond to
the query. Ensure these excerpts are brief yet complete.
Once identified, copy the entire passage and encapsulate
the relevant snippets using <START> and </END> tags
without changing any part of the original text. This
includes avoiding modifications to words, punctuation, or
formatting, as well as not adding any extra characters,
symbols, or spaces.
User: Question: {query} Passage: {passage}

B.3 Response Generation
Prompt for summarizing an information cluster into a one-sentence-
long text:

System: Summarize the provided information into one
sentence (approximately 35 words). Generate one-sentence
long summary that is short, concise and only contains the
information provided.
User: {information_cluster}.

Prompt for improving the fluency of the generated response:

System: Rephrase the response given a query to improve
its fluency. Do not change the information included in
the response. Do not add information not mentioned in the
original response.
User: Question: {query} Response: {response}
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